These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 21994034)
21. Mating Disruption of the Olive Moth Ortiz A; Porras A; Marti J; Tudela A; Rodríguez-González Á; Sambado P Insects; 2021 Dec; 12(12):. PubMed ID: 34940203 [TBL] [Abstract][Full Text] [Related]
22. Potential biological control of the pupal stage of the European grapevine moth Lobesia botrana by the entomopathogenic fungus Beauveria pseudobassiana in the winter season in Chile. Altimira F; De La Barra N; Rebufel P; Soto S; Soto R; Estay P; Vitta N; Tapia E BMC Res Notes; 2019 Aug; 12(1):548. PubMed ID: 31462292 [TBL] [Abstract][Full Text] [Related]
23. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Quesada-Moraga E; Navas-Cortés JA; Maranhao EA; Ortiz-Urquiza A; Santiago-Alvarez C Mycol Res; 2007 Aug; 111(Pt 8):947-66. PubMed ID: 17766099 [TBL] [Abstract][Full Text] [Related]
24. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem. Geetha N; Preseetha M; Hari K; Santhalakshmi G; Bai KS J Environ Biol; 2012 Jul; 33(4):721-7. PubMed ID: 23359998 [TBL] [Abstract][Full Text] [Related]
25. Factors affecting male Prays oleae (Lepidoptera: Yponomeutidae) captures in pheromone-baited traps in olive orchards. Kavallieratos NG; Athanassiou CG; Balotis GN; Tatsi GT; Mazomenos BE J Econ Entomol; 2005 Oct; 98(5):1499-505. PubMed ID: 16334316 [TBL] [Abstract][Full Text] [Related]
26. Methodological approach to spatial analysis of agricultural pest dispersal in olive landscapes. Moreno A; Rescia AJ; Pascual S; Ortega M Environ Monit Assess; 2022 May; 194(6):411. PubMed ID: 35532854 [TBL] [Abstract][Full Text] [Related]
27. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. Abdelfattah A; Ruano-Rosa D; Cacciola SO; Li Destri Nicosia MG; Schena L PLoS One; 2018; 13(11):e0199403. PubMed ID: 30496186 [TBL] [Abstract][Full Text] [Related]
28. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Rustiguel CB; Fernández-Bravo M; Guimarães LHS; Quesada-Moraga E Can J Microbiol; 2018 Mar; 64(3):191-200. PubMed ID: 29268028 [TBL] [Abstract][Full Text] [Related]
29. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Jaber S; Mercier A; Knio K; Brun S; Kambris Z Parasit Vectors; 2016 Sep; 9(1):491. PubMed ID: 27595597 [TBL] [Abstract][Full Text] [Related]
30. Immune response of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to different entomopathogenic fungi. Zibaee A; Malagoli D Bull Entomol Res; 2014 Apr; 104(2):155-63. PubMed ID: 24447729 [TBL] [Abstract][Full Text] [Related]
31. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Malan AP; Knoetze R; Moore SD J Invertebr Pathol; 2011 Oct; 108(2):115-25. PubMed ID: 21839086 [TBL] [Abstract][Full Text] [Related]
32. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females. Kryukov VY; Kryukova NA; Tyurin MV; Yaroslavtseva ON; Glupov VV Insect Sci; 2018 Aug; 25(4):643-654. PubMed ID: 28296161 [TBL] [Abstract][Full Text] [Related]
33. Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana reduce the survival of Xenopsylla brasiliensis larvae (Siphonaptera: Pulicidae). Mnyone LL; Ng'habi KR; Mazigo HD; Katakweba AA; Lyimo IN Parasit Vectors; 2012 Sep; 5():204. PubMed ID: 22992264 [TBL] [Abstract][Full Text] [Related]
34. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Materatski P; Varanda C; Carvalho T; Dias AB; Campos MD; Rei F; Félix MDR Fungal Biol; 2019 Jan; 123(1):66-76. PubMed ID: 30654959 [TBL] [Abstract][Full Text] [Related]
35. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Bukhari T; Takken W; Koenraadt CJ Parasit Vectors; 2011 Feb; 4():23. PubMed ID: 21342492 [TBL] [Abstract][Full Text] [Related]
36. ISSR markers to explore entomopathogenic fungi genetic diversity: Implications for biological control of tobacco pests. Vianna MF; Pelizza S; Russo ML; Toledo A; Mourelos C; Scorsetti AC J Biosci; 2020; 45():. PubMed ID: 33361627 [TBL] [Abstract][Full Text] [Related]
37. Use of micro-computed tomography to monitor olive fruit damage caused by three insect pests. Alba-Tercedor J; Ruano F Sci Rep; 2024 Sep; 14(1):21067. PubMed ID: 39256494 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control. Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923 [TBL] [Abstract][Full Text] [Related]
39. Occurrence and diversity of entomopathogenic fungi (Beauveria spp. and Metarhizium spp.) in Australian vineyard soils. Korosi GA; Wilson BAL; Powell KS; Ash GJ; Reineke A; Savocchia S J Invertebr Pathol; 2019 Jun; 164():69-77. PubMed ID: 31078548 [TBL] [Abstract][Full Text] [Related]
40. Mycoviral Population Dynamics in Spanish Isolates of the Entomopathogenic Fungus Filippou C; Garrido-Jurado I; Meyling NV; Quesada-Moraga E; Coutts RHA; Kotta-Loizou I Viruses; 2018 Nov; 10(12):. PubMed ID: 30477213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]