These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21994072)

  • 1. Invited review liquid crystal models of biological materials and silk spinning.
    Rey AD; Herrera-Valencia EE
    Biopolymers; 2012 Jun; 97(6):374-96. PubMed ID: 21994072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo rheology of spider silk.
    Kojić N; Bico J; Clasen C; McKinley GH
    J Exp Biol; 2006 Nov; 209(Pt 21):4355-62. PubMed ID: 17050850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.
    Lefèvre T; Paquet-Mercier F; Rioux-Dubé JF; Pézolet M
    Biopolymers; 2012 Jun; 97(6):322-36. PubMed ID: 21882171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the rheology of native spider and silkworm spinning dope.
    Holland C; Terry AE; Porter D; Vollrath F
    Nat Mater; 2006 Nov; 5(11):870-4. PubMed ID: 17057700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.
    Laity PR; Holland C
    Biomacromolecules; 2016 Aug; 17(8):2662-71. PubMed ID: 27315508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of flow in the silk gland.
    Breslauer DN; Lee LP; Muller SJ
    Biomacromolecules; 2009 Jan; 10(1):49-57. PubMed ID: 19053289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological properties of native silk fibroins from domestic and wild silkworms, and flow analysis in each spinneret by a finite element method.
    Moriya M; Roschzttardtz F; Nakahara Y; Saito H; Masubuchi Y; Asakura T
    Biomacromolecules; 2009 Apr; 10(4):929-35. PubMed ID: 19317399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers.
    Hoffmann B; Gruat-Henry C; Mulinti P; Jiang L; Brooks BD; Brooks AE
    PLoS One; 2018; 13(4):e0195522. PubMed ID: 29649239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanics of silk nanostructures under varied mechanical loading.
    Bratzel G; Buehler MJ
    Biopolymers; 2012 Jun; 97(6):408-17. PubMed ID: 22020792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori.
    Asakura T; Umemura K; Nakazawa Y; Hirose H; Higham J; Knight D
    Biomacromolecules; 2007 Jan; 8(1):175-81. PubMed ID: 17206804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Along the silk road, spiders make way for mussels.
    Carrington E
    Trends Biotechnol; 2008 Feb; 26(2):55-7. PubMed ID: 18191258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited review current progress and limitations of spider silk for biomedical applications.
    Widhe M; Johansson J; Hedhammar M; Rising A
    Biopolymers; 2012 Jun; 97(6):468-78. PubMed ID: 21898363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Contrast and Fast Photorheological Switching of a Twist-Bend Nematic Liquid Crystal.
    Aya S; Salamon P; Paterson DA; Storey JMD; Imrie CT; Araoka F; Jákli A; Buka Á
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31736478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide.
    Nair GG; Krishna Prasad S; Bhargavi R; Jayalakshmi V; Shanker G; Yelamaggad CV
    J Phys Chem B; 2010 Jan; 114(2):697-704. PubMed ID: 20028007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.
    Lin N; Liu XY
    Chem Soc Rev; 2015 Nov; 44(21):7881-915. PubMed ID: 26214062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration state dependence of the rheological and structural properties of reconstituted silk.
    Mo C; Holland C; Porter D; Shao Z; Vollrath F
    Biomacromolecules; 2009 Oct; 10(10):2724-8. PubMed ID: 19754134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of structure, elasticity, and dynamics in actin-based nematic materials.
    Zhang R; Kumar N; Ross JL; Gardel ML; de Pablo JJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):E124-E133. PubMed ID: 29284753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystalline spinning of spider silk.
    Vollrath F; Knight DP
    Nature; 2001 Mar; 410(6828):541-8. PubMed ID: 11279484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission and amplification of information and properties in nanostructured liquid crystals.
    Goodby JW; Saez IM; Cowling SJ; Görtz V; Draper M; Hall AW; Sia S; Cosquer G; Lee SE; Raynes EP
    Angew Chem Int Ed Engl; 2008; 47(15):2754-87. PubMed ID: 18311737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.