These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 21994119)
1. Are all quantitative postmarketing signal detection methods equal? Performance characteristics of logistic regression and Multi-item Gamma Poisson Shrinker. Berlin C; Blanch C; Lewis DJ; Maladorno DD; Michel C; Petrin M; Sarp S; Close P Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):622-30. PubMed ID: 21994119 [TBL] [Abstract][Full Text] [Related]
2. Antipsychotics, glycemic disorders, and life-threatening diabetic events: a Bayesian data-mining analysis of the FDA adverse event reporting system (1968-2004). DuMouchel W; Fram D; Yang X; Mahmoud RA; Grogg AL; Engelhart L; Ramaswamy K Ann Clin Psychiatry; 2008; 20(1):21-31. PubMed ID: 18297583 [TBL] [Abstract][Full Text] [Related]
3. Atypical antipsychotic drugs and diabetes mellitus in the US Food and Drug Administration Adverse Event database: a systematic Bayesian signal detection analysis. Baker RA; Pikalov A; Tran QV; Kremenets T; Arani RB; Doraiswamy PM Psychopharmacol Bull; 2009; 42(1):11-31. PubMed ID: 19204649 [TBL] [Abstract][Full Text] [Related]
4. Influence of the MedDRA hierarchy on pharmacovigilance data mining results. Pearson RK; Hauben M; Goldsmith DI; Gould AL; Madigan D; O'Hara DJ; Reisinger SJ; Hochberg AM Int J Med Inform; 2009 Dec; 78(12):e97-e103. PubMed ID: 19230751 [TBL] [Abstract][Full Text] [Related]
5. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department. Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511 [TBL] [Abstract][Full Text] [Related]
7. Identification of Substandard Medicines via Disproportionality Analysis of Individual Case Safety Reports. Trippe ZA; Brendani B; Meier C; Lewis D Drug Saf; 2017 Apr; 40(4):293-303. PubMed ID: 28130773 [TBL] [Abstract][Full Text] [Related]
8. Data mining for prospective early detection of safety signals in the Vaccine Adverse Event Reporting System (VAERS): a case study of febrile seizures after a 2010-2011 seasonal influenza virus vaccine. Martin D; Menschik D; Bryant-Genevier M; Ball R Drug Saf; 2013 Jul; 36(7):547-56. PubMed ID: 23657824 [TBL] [Abstract][Full Text] [Related]
9. Disproportionality analysis for signal detection of implantable cardioverter-defibrillator-related adverse events in the Food and Drug Administration Medical Device Reporting System. Duggirala HJ; Herz ND; Caños DA; Sullivan RA; Schaaf R; Pinnow E; Marinac-Dabic D Pharmacoepidemiol Drug Saf; 2012 Jan; 21(1):87-93. PubMed ID: 22095760 [TBL] [Abstract][Full Text] [Related]
10. Optimization of a quantitative signal detection algorithm for spontaneous reports of adverse events post immunization. Van Holle L; Bauchau V Pharmacoepidemiol Drug Saf; 2013 May; 22(5):477-87. PubMed ID: 23255430 [TBL] [Abstract][Full Text] [Related]
11. Using time-to-onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study. Van Holle L; Zeinoun Z; Bauchau V; Verstraeten T Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):603-10. PubMed ID: 22383219 [TBL] [Abstract][Full Text] [Related]
12. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Park MY; Yoon D; Lee K; Kang SY; Park I; Lee SH; Kim W; Kam HJ; Lee YH; Kim JH; Park RW Pharmacoepidemiol Drug Saf; 2011 Jun; 20(6):598-607. PubMed ID: 21472818 [TBL] [Abstract][Full Text] [Related]
13. Statistical and graphical approaches for disproportionality analysis of spontaneously-reported adverse events in pharmacovigilance. Zink RC; Huang Q; Zhang LY; Bao WJ Chin J Nat Med; 2013 May; 11(3):314-20. PubMed ID: 23725848 [TBL] [Abstract][Full Text] [Related]
14. A shrinkage-based comparative assessment of observed-to-expected disproportionality measures. Gipson G Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):589-96. PubMed ID: 22290739 [TBL] [Abstract][Full Text] [Related]
15. Comparing data mining methods on the VAERS database. Banks D; Woo EJ; Burwen DR; Perucci P; Braun MM; Ball R Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):601-9. PubMed ID: 15954077 [TBL] [Abstract][Full Text] [Related]
16. Comparison of data mining methodologies using Japanese spontaneous reports. Kubota K; Koide D; Hirai T Pharmacoepidemiol Drug Saf; 2004 Jun; 13(6):387-94. PubMed ID: 15170768 [TBL] [Abstract][Full Text] [Related]
17. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database. Szarfman A; Machado SG; O'Neill RT Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774 [TBL] [Abstract][Full Text] [Related]
18. A knowledge based approach for automated signal generation in pharmacovigilance. Henegar C; Bousquet C; Lillo-Le Louët A; Degoulet P; Jaulent MC Stud Health Technol Inform; 2004; 107(Pt 1):626-30. PubMed ID: 15360888 [TBL] [Abstract][Full Text] [Related]
19. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions. Hauben M; Horn S; Reich L Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879 [TBL] [Abstract][Full Text] [Related]
20. Using simulation to assess the sensitivity and specificity of a signal detection tool for multidimensional public health surveillance data. Rolka H; Bracy D; Russell C; Fram D; Ball R Stat Med; 2005 Feb; 24(4):551-62. PubMed ID: 15678409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]