BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21994158)

  • 1. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review.
    Petersen EJ; Henry TB
    Environ Toxicol Chem; 2012 Jan; 31(1):60-72. PubMed ID: 21994158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.
    Ju-Nam Y; Lead JR
    Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants.
    Basiuk EV; Ochoa-Olmos OE; De la Mora-Estrada LF
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3016-38. PubMed ID: 21776669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles.
    Dönmez Güngüneş Ç; Şeker Ş; Elçin AE; Elçin YM
    Drug Chem Toxicol; 2017 Apr; 40(2):215-227. PubMed ID: 27424666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From ecotoxicology to nanoecotoxicology.
    Kahru A; Dubourguier HC
    Toxicology; 2010 Mar; 269(2-3):105-19. PubMed ID: 19732804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms.
    Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S
    Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies.
    Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM
    Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms].
    Wang ZY; Zhao J; Li N; Li FM; Xing BS
    Huan Jing Ke Xue; 2010 Jun; 31(6):1409-18. PubMed ID: 20698250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis.
    Riding MJ; Martin FL; Trevisan J; Llabjani V; Patel II; Jones KC; Semple KT
    Environ Pollut; 2012 Apr; 163():226-34. PubMed ID: 22265761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicity of manufactured ZnO nanoparticles--a review.
    Ma H; Williams PL; Diamond SA
    Environ Pollut; 2013 Jan; 172():76-85. PubMed ID: 22995930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations.
    Sekine R; Khurana K; Vasilev K; Lombi E; Donner E
    Nanotoxicology; 2015; 9(8):1005-12. PubMed ID: 25697180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review.
    Abbas M; Adil M; Ehtisham-Ul-Haque S; Munir B; Yameen M; Ghaffar A; Shar GA; Asif Tahir M; Iqbal M
    Sci Total Environ; 2018 Jun; 626():1295-1309. PubMed ID: 29898537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental implications of nanomaterials: are we studying the right thing?
    Turco RF; Bischoff M; Tong ZH; Nies L
    Curr Opin Biotechnol; 2011 Aug; 22(4):527-32. PubMed ID: 21742482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.
    Handy RD; Owen R; Valsami-Jones E
    Ecotoxicology; 2008 Jul; 17(5):315-25. PubMed ID: 18408994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicity testing: science, politics and ethics.
    Walker CH
    Altern Lab Anim; 2008 Feb; 36(1):103-12. PubMed ID: 18333718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms.
    Scott-Fordsmand JJ; Krogh PH; Schaefer M; Johansen A
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):616-9. PubMed ID: 18514310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review.
    Du J; Wang S; You H; Zhao X
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):451-462. PubMed ID: 23770455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.