These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 21994158)
1. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Petersen EJ; Henry TB Environ Toxicol Chem; 2012 Jan; 31(1):60-72. PubMed ID: 21994158 [TBL] [Abstract][Full Text] [Related]
2. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Ju-Nam Y; Lead JR Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626 [TBL] [Abstract][Full Text] [Related]
3. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants. Basiuk EV; Ochoa-Olmos OE; De la Mora-Estrada LF J Nanosci Nanotechnol; 2011 Apr; 11(4):3016-38. PubMed ID: 21776669 [TBL] [Abstract][Full Text] [Related]
4. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Dönmez Güngüneş Ç; Şeker Ş; Elçin AE; Elçin YM Drug Chem Toxicol; 2017 Apr; 40(2):215-227. PubMed ID: 27424666 [TBL] [Abstract][Full Text] [Related]
5. From ecotoxicology to nanoecotoxicology. Kahru A; Dubourguier HC Toxicology; 2010 Mar; 269(2-3):105-19. PubMed ID: 19732804 [TBL] [Abstract][Full Text] [Related]
6. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051 [TBL] [Abstract][Full Text] [Related]
7. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies. Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332 [TBL] [Abstract][Full Text] [Related]
8. [Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms]. Wang ZY; Zhao J; Li N; Li FM; Xing BS Huan Jing Ke Xue; 2010 Jun; 31(6):1409-18. PubMed ID: 20698250 [TBL] [Abstract][Full Text] [Related]
9. Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis. Riding MJ; Martin FL; Trevisan J; Llabjani V; Patel II; Jones KC; Semple KT Environ Pollut; 2012 Apr; 163():226-34. PubMed ID: 22265761 [TBL] [Abstract][Full Text] [Related]
10. Ecotoxicity of manufactured ZnO nanoparticles--a review. Ma H; Williams PL; Diamond SA Environ Pollut; 2013 Jan; 172():76-85. PubMed ID: 22995930 [TBL] [Abstract][Full Text] [Related]
11. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations. Sekine R; Khurana K; Vasilev K; Lombi E; Donner E Nanotoxicology; 2015; 9(8):1005-12. PubMed ID: 25697180 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the toxicity of selected types of nanochemicals. Kumar V; Kumari A; Guleria P; Yadav SK Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930 [TBL] [Abstract][Full Text] [Related]
14. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Abbas M; Adil M; Ehtisham-Ul-Haque S; Munir B; Yameen M; Ghaffar A; Shar GA; Asif Tahir M; Iqbal M Sci Total Environ; 2018 Jun; 626():1295-1309. PubMed ID: 29898537 [TBL] [Abstract][Full Text] [Related]
15. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Yan L; Zhao F; Li S; Hu Z; Zhao Y Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592 [TBL] [Abstract][Full Text] [Related]
16. Environmental implications of nanomaterials: are we studying the right thing? Turco RF; Bischoff M; Tong ZH; Nies L Curr Opin Biotechnol; 2011 Aug; 22(4):527-32. PubMed ID: 21742482 [TBL] [Abstract][Full Text] [Related]
17. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Handy RD; Owen R; Valsami-Jones E Ecotoxicology; 2008 Jul; 17(5):315-25. PubMed ID: 18408994 [TBL] [Abstract][Full Text] [Related]
19. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Scott-Fordsmand JJ; Krogh PH; Schaefer M; Johansen A Ecotoxicol Environ Saf; 2008 Nov; 71(3):616-9. PubMed ID: 18514310 [TBL] [Abstract][Full Text] [Related]
20. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Du J; Wang S; You H; Zhao X Environ Toxicol Pharmacol; 2013 Sep; 36(2):451-462. PubMed ID: 23770455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]