BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21994427)

  • 1. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases plasma CETP and increases apolipoprotein AI levels without improving the cholesterol efflux properties of HDL.
    Wang Y; Snel M; Jonker JT; Hammer S; Lamb HJ; de Roos A; Meinders AE; Pijl H; Romijn JA; Smit JW; Jazet IM; Rensen PC
    Diabetes Care; 2011 Dec; 34(12):2576-80. PubMed ID: 21994427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins.
    Borggreve SE; De Vries R; Dullaart RP
    Eur J Clin Invest; 2003 Dec; 33(12):1051-69. PubMed ID: 14636288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pioglitazone decreases plasma cholesteryl ester transfer protein mass, associated with a decrease in hepatic triglyceride content, in patients with type 2 diabetes.
    Jonker JT; Wang Y; de Haan W; Diamant M; Rijzewijk LJ; van der Meer RW; Lamb HJ; Tamsma JT; de Roos A; Romijn JA; Rensen PC; Smit JW
    Diabetes Care; 2010 Jul; 33(7):1625-8. PubMed ID: 20150294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesteryl Ester Transfer Protein Inhibition With Anacetrapib Decreases Fractional Clearance Rates of High-Density Lipoprotein Apolipoprotein A-I and Plasma Cholesteryl Ester Transfer Protein.
    Reyes-Soffer G; Millar JS; Ngai C; Jumes P; Coromilas E; Asztalos B; Johnson-Levonas AO; Wagner JA; Donovan DS; Karmally W; Ramakrishnan R; Holleran S; Thomas T; Dunbar RL; deGoma EM; Rafeek H; Baer AL; Liu Y; Lassman ME; Gutstein DE; Rader DJ; Ginsberg HN
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):994-1002. PubMed ID: 26966279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-saturated-fat, low-cholesterol diet decreases plasma CETP activity and pre beta-HDL formation but does not affect cellular cholesterol efflux to plasma from type 1 diabetic patients.
    De Vries R; Beusekamp BJ; Kerstens MN; Groen AK; Van Tol A; Dullaart RP
    Scand J Clin Lab Invest; 2005; 65(8):729-37. PubMed ID: 16319046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice.
    Zhong S; Goldberg IJ; Bruce C; Rubin E; Breslow JL; Tall A
    J Clin Invest; 1994 Dec; 94(6):2457-67. PubMed ID: 7989603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure.
    Martinelli AEM; Maranhão RC; Carvalho PO; Freitas FR; Silva BMO; Curiati MNC; Kalil Filho R; Pereira-Barretto AC
    Lipids Health Dis; 2018 Oct; 17(1):242. PubMed ID: 30342531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice.
    van der Hoorn JW; de Haan W; Berbée JF; Havekes LM; Jukema JW; Rensen PC; Princen HM
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2016-22. PubMed ID: 18669886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma phospholipid transfer protein activity is related to insulin resistance: impaired acute lowering by insulin in obese Type II diabetic patients.
    Riemens SC; van Tol A; Sluiter WJ; Dullaart RP
    Diabetologia; 1998 Aug; 41(8):929-34. PubMed ID: 9726595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased prebeta-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (apoA-I) transgenes.
    Francone OL; Royer L; Haghpassand M
    J Lipid Res; 1996 Jun; 37(6):1268-77. PubMed ID: 8808761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ApoE and apoC-III-defined HDL subtypes: a descriptive study of their lecithin cholesterol acyl transferase and cholesteryl ester transfer protein content and activity.
    Amaya-Montoya M; Pinzón-Cortés JA; Silva-Bermúdez LS; Ruiz-Manco D; Pérez-Matos MC; Jiménez-Mora MA; Mendivil CO
    Lipids Health Dis; 2020 May; 19(1):106. PubMed ID: 32450892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human apoA-I expression in CETP transgenic rats leads to lower levels of apoC-I in HDL and to magnification of CETP-mediated lipoprotein changes.
    Masson D; Pais de Barros JP; Zak Z; Gautier T; Le Guern N; Assem M; Chisholm JW; Paterniti JR; Lagrost L
    J Lipid Res; 2006 Feb; 47(2):356-65. PubMed ID: 16282639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in Type 2 diabetes: relationship to serum lipoproteins A-I and A-II.
    Jones RJ; Owens D; Brennan C; Collins PB; Johnson AH; Tomkin GH
    Atherosclerosis; 1996 Jan; 119(2):151-7. PubMed ID: 8808492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol efflux potential of sera from mice expressing human cholesteryl ester transfer protein and/or human apolipoprotein AI.
    Atger V; de la Llera Moya M; Bamberger M; Francone O; Cosgrove P; Tall A; Walsh A; Moatti N; Rothblat G
    J Clin Invest; 1995 Dec; 96(6):2613-22. PubMed ID: 8675626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesteryl ester transfer activity in liver disease and cholestasis, and its relation with fatty acid composition of lipoprotein lipids.
    Iglesias A; Arranz M; Alvarez JJ; Perales J; Villar J; Herrera E; Lasunción MA
    Clin Chim Acta; 1996 Apr; 248(2):157-74. PubMed ID: 8740580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bexarotene induces dyslipidemia by increased very low-density lipoprotein production and cholesteryl ester transfer protein-mediated reduction of high-density lipoprotein.
    de Vries-van der Weij J; de Haan W; Hu L; Kuif M; Oei HL; van der Hoorn JW; Havekes LM; Princen HM; Romijn JA; Smit JW; Rensen PC
    Endocrinology; 2009 May; 150(5):2368-75. PubMed ID: 19147676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular cholesterol efflux to plasma from moderately hypercholesterolaemic type 1 diabetic patients is enhanced, and is unaffected by simvastatin treatment.
    de Vries R; Kerstens MN; Sluiter WJ; Groen AK; van Tol A; Dullaart RP
    Diabetologia; 2005 Jun; 48(6):1105-13. PubMed ID: 15875154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HDL cholesterol efflux capacity and cholesteryl ester transfer are associated with body mass, but are not changed by diet-induced weight loss: A randomized trial in abdominally obese men.
    Talbot CPJ; Plat J; Joris PJ; Konings M; Kusters YHAM; Schalkwijk CG; Ritsch A; Mensink RP
    Atherosclerosis; 2018 Jul; 274():23-28. PubMed ID: 29747087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesteryl ester transfer protein gene polymorphism is a determinant of HDL cholesterol and of the lipoprotein response to a lipid-lowering diet in type 1 diabetes.
    Dullaart RP; Hoogenberg K; Riemens SC; Groener JE; van Tol A; Sluiter WJ; Stulp BK
    Diabetes; 1997 Dec; 46(12):2082-7. PubMed ID: 9392500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic Acid Accelerates HDL Cholesteryl Ester Turnover in Obese Insulin-Resistant Dogs.
    Le Bloc'h J; Leray V; Nazih H; Gauthier O; Serisier S; Magot T; Krempf M; Nguyen P; Ouguerram K
    PLoS One; 2015; 10(9):e0136934. PubMed ID: 26366727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.