These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21994480)

  • 1. A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes.
    Youm JB; Choi SW; Jang CH; Kim HK; Leem CH; Kim N; Han J
    Korean J Physiol Pharmacol; 2011 Aug; 15(4):217-39. PubMed ID: 21994480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes.
    Krstic AM; Power AS; Ward ML
    Front Physiol; 2021; 12():808798. PubMed ID: 35140632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes.
    Sedova M; Dedkova EN; Blatter LA
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C840-50. PubMed ID: 16723510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.
    Zima AV; Pabbidi MR; Lipsius SL; Blatter LA
    Am J Physiol Heart Circ Physiol; 2013 Apr; 304(7):H983-93. PubMed ID: 23376829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
    Belmonte S; Morad M
    J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acidosis on resting cytosolic and mitochondrial Ca2+ in mammalian myocardium.
    Gambassi G; Hansford RG; Sollott SJ; Hogue BA; Lakatta EG; Capogrossi MC
    J Gen Physiol; 1993 Sep; 102(3):575-97. PubMed ID: 8245824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Na+/Ca2+ exchange blocker SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in canine ventricular cardiomyocytes.
    Birinyi P; Tóth A; Jóna I; Acsai K; Almássy J; Nagy N; Prorok J; Gherasim I; Papp Z; Hertelendi Z; Szentandrássy N; Bányász T; Fülöp F; Papp JG; Varró A; Nánási PP; Magyar J
    Cardiovasc Res; 2008 Jun; 78(3):476-84. PubMed ID: 18252759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart.
    Sánchez JA; García MC; Sharma VK; Young KC; Matlib MA; Sheu SS
    J Physiol; 2001 Oct; 536(Pt 2):387-96. PubMed ID: 11600674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes.
    Saotome M; Katoh H; Satoh H; Nagasaka S; Yoshihara S; Terada H; Hayashi H
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1820-8. PubMed ID: 15563537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes.
    Zhou Z; Matlib MA; Bers DM
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):379-403. PubMed ID: 9518700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea-pig and rat heart.
    Janiak R; Lewartowski B; Langer GA
    J Mol Cell Cardiol; 1996 Feb; 28(2):253-64. PubMed ID: 8729058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons.
    Wang GJ; Thayer SA
    J Neurophysiol; 1996 Sep; 76(3):1611-21. PubMed ID: 8890280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes.
    Andrienko TN; Picht E; Bers DM
    J Mol Cell Cardiol; 2009 Jun; 46(6):1027-36. PubMed ID: 19345225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependencies of Ca2+ current, Ca(2+)-activated Cl- current and Ca2+ transients in sensory neurones.
    Kenyon JL; Goff HR
    Cell Calcium; 1998 Jul; 24(1):35-48. PubMed ID: 9793687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria.
    Hohendanner F; Maxwell JT; Blatter LA
    Channels (Austin); 2015; 9(3):129-38. PubMed ID: 25891132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodality of Ca2+ signaling in rat atrial myocytes.
    Morad M; Javaheri A; Risius T; Belmonte S
    Ann N Y Acad Sci; 2005 Jun; 1047():112-21. PubMed ID: 16093489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in mitochondrial calcium concentration during the cardiac contraction cycle.
    Isenberg G; Han S; Schiefer A; Wendt-Gallitelli MF
    Cardiovasc Res; 1993 Oct; 27(10):1800-9. PubMed ID: 8275527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.