BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21995056)

  • 1. Iterative refinement of point correspondences for 3D statistical shape models.
    Seshamani S; Chintalapani G; Taylor R
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):417-25. PubMed ID: 21995056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical atlases of bone anatomy: construction, iterative improvement and validation.
    Chintalapani G; Ellingsen LM; Sadowsky O; Prince JL; Taylor RH
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):499-506. PubMed ID: 18051096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics.
    Sadowsky O; Chintalapani G; Taylor RH
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):519-26. PubMed ID: 18044608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric correspondence for ensembles of nonregular shapes.
    Datar M; Gur Y; Paniagua B; Styner M; Whitaker R
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):368-75. PubMed ID: 21995050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for the merging of pre-existing and correspondenceless 3D statistical shape models.
    Pereañez M; Lekadir K; Butakoff C; Hoogendoorn C; Frangi AF
    Med Image Anal; 2014 Oct; 18(7):1044-58. PubMed ID: 24983233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D/3D deformable registration using a hybrid atlas.
    Tang TS; Ellis RE
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):223-30. PubMed ID: 16685963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpringLS: a deformable model representation to provide interoperability between meshes and level sets.
    Lucas BC; Kazhdan M; Taylor RH
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):442-50. PubMed ID: 21995059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femur statistical atlas construction based on two-level 3D non-rigid registration.
    Wu C; Murtha PE; Jaramaz B
    Comput Aided Surg; 2009; 14(4-6):83-99. PubMed ID: 20121588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the similarity of statistical shape models using the Bhattacharya metric.
    Babalola KO; Cootes TF; Patenaude B; Rao A; Jenkinson M
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):142-50. PubMed ID: 17354884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The deformable most-likely-point paradigm.
    Sinha A; Billings SD; Reiter A; Liu X; Ishii M; Hager GD; Taylor RH
    Med Image Anal; 2019 Jul; 55():148-164. PubMed ID: 31078111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic multi-organ segmentation using learning-based segmentation and level set optimization.
    Kohlberger T; Sofka M; Zhang J; Birkbeck N; Wetzl J; Kaftan J; Declerck J; Zhou SK
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):338-45. PubMed ID: 22003717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D shape registration for dynamic electrophysiological cardiac mapping.
    Wilson K; Guiraudon G; Jones D; Peters TM
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):520-7. PubMed ID: 17354812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape analysis using a point-based statistical shape model built on correspondence probabilities.
    Hufnagel H; Pennec X; Ehrhardt J; Handels H; Ayache N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):959-67. PubMed ID: 18051151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic construction of correspondences for tubular surfaces.
    Huysmans T; Sijbers J; Verdonk B
    IEEE Trans Pattern Anal Mach Intell; 2010 Apr; 32(4):636-51. PubMed ID: 20224120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.
    Barratt DC; Chan CS; Edwards PJ; Penney GP; Slomczykowski M; Carter TJ; Hawkes DJ
    Med Image Anal; 2008 Jun; 12(3):358-74. PubMed ID: 18313973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posterior shape models.
    Albrecht T; Lüthi M; Gerig T; Vetter T
    Med Image Anal; 2013 Dec; 17(8):959-73. PubMed ID: 23837968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative 3D point-set registration based on hierarchical vertex signature (HVS).
    Feng J; Ip HH
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):279-86. PubMed ID: 16685970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building dynamic population graph for accurate correspondence detection.
    Du S; Guo Y; Sanroma G; Ni D; Wu G; Shen D
    Med Image Anal; 2015 Dec; 26(1):256-67. PubMed ID: 26519794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.