These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21995260)

  • 1. Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa.
    Uejio CK; Kemp A; Comrie AC
    Vector Borne Zoonotic Dis; 2012 Feb; 12(2):117-25. PubMed ID: 21995260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
    Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ
    Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors That Influence the Transmission of West Nile Virus in Florida.
    Day JF; Tabachnick WJ; Smartt CT
    J Med Entomol; 2015 Sep; 52(5):743-54. PubMed ID: 26336216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional variation of climatic influences on West Nile virus outbreaks in the United States.
    Wimberly MC; Lamsal A; Giacomo P; Chuang TW
    Am J Trop Med Hyg; 2014 Oct; 91(4):677-684. PubMed ID: 25092814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landscape, demographic and climatic associations with human West Nile virus occurrence regionally in 2012 in the United States of America.
    DeGroote JP; Sugumaran R; Ecker M
    Geospat Health; 2014 Nov; 9(1):153-68. PubMed ID: 25545933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of sentinel chickens to study the transmission dynamics of West Nile virus in a sahelian ecosystem.
    Chevalier V; Lancelot R; Diaïte A; Mondet B; De Lamballerie X
    Epidemiol Infect; 2008 Apr; 136(4):525-8. PubMed ID: 17559695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal analyses of West Nile virus transmission in Culex mosquitoes in northern Illinois, USA, 2004.
    Gu W; Lampman R; Krasavin N; Berry R; Novak R
    Vector Borne Zoonotic Dis; 2006; 6(1):91-8. PubMed ID: 16584331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012.
    Hahn MB; Monaghan AJ; Hayden MH; Eisen RJ; Delorey MJ; Lindsey NP; Nasci RS; Fischer M
    Am J Trop Med Hyg; 2015 May; 92(5):1013-22. PubMed ID: 25802435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. National and regional associations between human West Nile virus incidence and demographic, landscape, and land use conditions in the coterminous United States.
    DeGroote JP; Sugumaran R
    Vector Borne Zoonotic Dis; 2012 Aug; 12(8):657-65. PubMed ID: 22607071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparision of West Nile Virus transmission by Ochlerotatus trivittatus (COQ.), Culex pipiens (L.), and Aedes albopictus (Skuse).
    Tiawsirisup S; Platt KB; Evans RB; Rowley WA
    Vector Borne Zoonotic Dis; 2005; 5(1):40-7. PubMed ID: 15815148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae).
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2006 Mar; 43(2):309-17. PubMed ID: 16619616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. West Nile virus infections in Greece: an update.
    Papa A
    Expert Rev Anti Infect Ther; 2012 Jul; 10(7):743-50. PubMed ID: 22943398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting West Nile Virus Infection Risk From the Synergistic Effects of Rainfall and Temperature.
    Shand L; Brown WM; Chaves LF; Goldberg TL; Hamer GL; Haramis L; Kitron U; Walker ED; Ruiz MO
    J Med Entomol; 2016 Jul; 53(4):935-944. PubMed ID: 27113111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura.
    Andreadis TG; Anderson JF; Vossbrinck CR
    Emerg Infect Dis; 2001; 7(4):670-4. PubMed ID: 11585530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continental risk assessment of West Nile virus under climate change.
    Harrigan RJ; Thomassen HA; Buermann W; Smith TB
    Glob Chang Biol; 2014 Aug; 20(8):2417-25. PubMed ID: 24574161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans.
    Jupp PG
    Ann N Y Acad Sci; 2001 Dec; 951():143-52. PubMed ID: 11797772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three methods for determining transmission rates in vector competence studies with Culex univittatus and West Nile and Sindbis viruses.
    Cornel AJ; Jupp PG
    J Am Mosq Control Assoc; 1989 Mar; 5(1):70-2. PubMed ID: 2540264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. West Nile virus neuroinvasive disease incidence in the United States, 2002-2006.
    Lindsey NP; Kuhn S; Campbell GL; Hayes EB
    Vector Borne Zoonotic Dis; 2008; 8(1):35-9. PubMed ID: 18237264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA.
    DeGroote JP; Sugumaran R; Brend SM; Tucker BJ; Bartholomay LC
    Int J Health Geogr; 2008 May; 7():19. PubMed ID: 18452604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.