These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21995536)

  • 1. A new generation of sodium chloride porogen for tissue engineering.
    Tran RT; Naseri E; Kolasnikov A; Bai X; Yang J
    Biotechnol Appl Biochem; 2011; 58(5):335-44. PubMed ID: 21995536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel seamless elastic scaffold for vascular tissue engineering.
    Kim SH; Chung E; Kim SH; Jung Y; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(3):289-302. PubMed ID: 20178686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration.
    Plikk P; Målberg S; Albertsson AC
    Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.
    Niino T; Hamajima D; Montagne K; Oizumi S; Naruke H; Huang H; Sakai Y; Kinoshita H; Fujii T
    Biofabrication; 2011 Sep; 3(3):034104. PubMed ID: 21725146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties.
    Correlo VM; Boesel LF; Pinho E; Costa-Pinto AR; Alves da Silva ML; Bhattacharya M; Mano JF; Neves NM; Reis RL
    J Biomed Mater Res A; 2009 Nov; 91(2):489-504. PubMed ID: 18985771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering.
    Adwan H; Fuller B; Seldon C; Davidson B; Seifalian A
    J Biomater Appl; 2013 Aug; 28(2):250-61. PubMed ID: 22532408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix.
    Rich J; Korhonen H; Hakala R; Korventausta J; Elomaa L; Seppälä J
    Macromol Biosci; 2009 Jul; 9(7):654-60. PubMed ID: 19165824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating.
    Salerno A; Zeppetelli S; Di Maio E; Iannace S; Netti PA
    Biotechnol Bioeng; 2011 Apr; 108(4):963-76. PubMed ID: 21404268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.
    Elomaa L; Teixeira S; Hakala R; Korhonen H; Grijpma DW; Seppälä JV
    Acta Biomater; 2011 Nov; 7(11):3850-6. PubMed ID: 21763796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous alginate/poly(ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity.
    Grandi C; Di Liddo R; Paganin P; Lora S; Dalzoppo D; Feltrin G; Giraudo C; Tommasini M; Conconi MT; Parnigotto PP
    Int J Mol Med; 2011 Mar; 27(3):455-67. PubMed ID: 21206967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2.5D constructs for characterizing phase separated polymer blend surface morphology in tissue engineering scaffolds.
    Marszalek JE; Simon CG; Thodeti C; Adapala RK; Murthy A; Karim A
    J Biomed Mater Res A; 2013 May; 101(5):1502-10. PubMed ID: 23184520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.
    Lin-Gibson S; Cooper JA; Landis FA; Cicerone MT
    Biomacromolecules; 2007 May; 8(5):1511-8. PubMed ID: 17381151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering scaffolds based on photocured dimethacrylate polymers for in vitro optical imaging.
    Landis FA; Stephens JS; Cooper JA; Cicerone MT; Lin-Gibson S
    Biomacromolecules; 2006 Jun; 7(6):1751-7. PubMed ID: 16768394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
    Murphy WL; Dennis RG; Kileny JL; Mooney DJ
    Tissue Eng; 2002 Feb; 8(1):43-52. PubMed ID: 11886653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds.
    Ren J; Ren T; Zhao P; Huang Y; Pan K
    J Biomater Sci Polym Ed; 2007; 18(5):505-17. PubMed ID: 17550655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.