These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21995550)

  • 1. Structural adaptation of normal and tumour vascular networks.
    Secomb TW; Dewhirst MW; Pries AR
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):63-9. PubMed ID: 21995550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The shunt problem: control of functional shunting in normal and tumour vasculature.
    Pries AR; Höpfner M; le Noble F; Dewhirst MW; Secomb TW
    Nat Rev Cancer; 2010 Aug; 10(8):587-93. PubMed ID: 20631803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural adaptation and heterogeneity of normal and tumor microvascular networks.
    Pries AR; Cornelissen AJ; Sloot AA; Hinkeldey M; Dreher MR; Höpfner M; Dewhirst MW; Secomb TW
    PLoS Comput Biol; 2009 May; 5(5):e1000394. PubMed ID: 19478883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of angioadaptation: insights for vascular development.
    Pries AR; Reglin B; Secomb TW
    Int J Dev Biol; 2011; 55(4-5):399-405. PubMed ID: 21858766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling.
    Tuna BG; Bakker EN; VanBavel E
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):35-41. PubMed ID: 21902815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intussusceptive angiogenesis: pillars against the blood flow.
    Styp-Rekowska B; Hlushchuk R; Pries AR; Djonov V
    Acta Physiol (Oxf); 2011 Jul; 202(3):213-23. PubMed ID: 21535415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth.
    Welter M; Bartha K; Rieger H
    J Theor Biol; 2009 Aug; 259(3):405-22. PubMed ID: 19371750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making microvascular networks work: angiogenesis, remodeling, and pruning.
    Pries AR; Secomb TW
    Physiology (Bethesda); 2014 Nov; 29(6):446-55. PubMed ID: 25362638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling.
    Naghavi N; Hosseini FS; Sardarabadi M; Kalani H
    Microvasc Res; 2016 Sep; 107():51-64. PubMed ID: 27179697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro.
    Sano H; Watanabe M; Yamashita T; Tanishita K; Sudo R
    Biofabrication; 2020 Jul; 12(4):045008. PubMed ID: 32644945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of angiogenesis in three dimensions: Application to cerebral cortex.
    Alberding JP; Secomb TW
    PLoS Comput Biol; 2021 Jun; 17(6):e1009164. PubMed ID: 34170925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information transfer in microvascular networks.
    Secomb TW; Pries AR
    Microcirculation; 2002 Oct; 9(5):377-87. PubMed ID: 12375175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenesis: an adaptive dynamic biological patterning problem.
    Secomb TW; Alberding JP; Hsu R; Dewhirst MW; Pries AR
    PLoS Comput Biol; 2013; 9(3):e1002983. PubMed ID: 23555218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How tumour-induced vascular changes alter angiogenesis: Insights from a computational model.
    Stéphanou A; Lesart AC; Deverchère J; Juhem A; Popov A; Estève F
    J Theor Biol; 2017 Apr; 419():211-226. PubMed ID: 28223171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis.
    Guo P; Fu BM
    J Biomech Eng; 2012 Apr; 134(4):041003. PubMed ID: 22667678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
    Pries AR; Secomb TW; Gaehtgens P
    Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.