These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21995643)

  • 21. Analytical and numerical modelling of Newtonian and non-Newtonian liquid in a rotational cross-flow MBR.
    Bentzen TR; Ratkovich N; Madsen S; Jensen JC; Bak SN; Rasmussen MR
    Water Sci Technol; 2012; 66(11):2318-27. PubMed ID: 23032760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery.
    Anastasiou AD; Spyrogianni AS; Koskinas KC; Giannoglou GD; Paras SV
    Med Eng Phys; 2012 Mar; 34(2):211-8. PubMed ID: 21824798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids.
    Pohl M; Wendt MO; Werner S; Koch B; Lerche D
    Artif Organs; 1996 Jan; 20(1):37-46. PubMed ID: 8645128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models.
    Mann DE; Tarbell JM
    Biorheology; 1990; 27(5):711-33. PubMed ID: 2271763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rheological study of the order-disorder conformational transition of xanthan gum.
    Pelletier E; Viebke C; Meadows J; Williams PA
    Biopolymers; 2001 Oct; 59(5):339-46. PubMed ID: 11514937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.
    Woo YR; Yoganathan AP
    Med Instrum; 1985; 19(5):224-31. PubMed ID: 2932625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the washout effect in a magnetically driven axial blood pump.
    Triep M; Brücker C; Kerkhoffs W; Schumacher O; Marseille O
    Artif Organs; 2008 Oct; 32(10):778-84. PubMed ID: 18959666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.
    Stokes JR; Macakova L; Chojnicka-Paszun A; de Kruif CG; de Jongh HH
    Langmuir; 2011 Apr; 27(7):3474-84. PubMed ID: 21366278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics.
    Zhang Y; Xue S; Gui XM; Sun HS; Zhang H; Zhu XD; Hu SS
    Artif Organs; 2007 Jul; 31(7):580-5. PubMed ID: 17584484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro pulsatile flow measurements in the vicinity of mechanical heart valves in the mitral flow chamber.
    Woo YR; Yoganathan AP
    Life Support Syst; 1986; 4(2):115-39. PubMed ID: 2943945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal design of non-Newtonian, micro-scale viscous pumps for biomedical devices.
    da Silva AK; Kobayashi MH; Coimbra CF
    Biotechnol Bioeng; 2007 Jan; 96(1):37-47. PubMed ID: 16917929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a 6 x 18 inch rheology tunnel for experimental fluid dynamics investigation.
    Miklosovic DS; Gregorek GM; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M625-31. PubMed ID: 9360120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.
    Nandy S; Tarbell JM
    Biorheology; 1987; 24(5):483-500. PubMed ID: 2965604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent image tracking velocimetry of the Nimbus AxiPump.
    Kerrigan JP; Shaffer FD; Maher TR; Dennis TJ; Borovetz HS; Antaki JF
    ASAIO J; 1993; 39(3):M639-43. PubMed ID: 8268616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of a centrifugal blood pump with different impeller profiles.
    Song G; Chua LP; Lim TM
    ASAIO J; 2010; 56(1):24-9. PubMed ID: 20019595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.