BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21995727)

  • 1. On the mechanism and rate of spontaneous decomposition of amino acids.
    Alexandrova AN; Jorgensen WL
    J Phys Chem B; 2011 Nov; 115(46):13624-32. PubMed ID: 21995727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanics study and Monte Carlo simulation on the hydrolytic deamination of 5-methylcytosine glycol.
    Chen ZQ; Zhang CH; Kim CK; Xue Y
    Phys Chem Chem Phys; 2011 Apr; 13(14):6471-83. PubMed ID: 21380473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Pyrimidine Decarboxylations in the Absence of a Catalyst.
    Lewis CA; Shen L; Yang W; Wolfenden R
    Biochemistry; 2017 Mar; 56(10):1498-1503. PubMed ID: 28225618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5'-monophosphate decarboxylase using two different QM regions: acceleration too small to explain rate of enzyme catalysis.
    Stanton CL; Kuo IF; Mundy CJ; Laino T; Houk KN
    J Phys Chem B; 2007 Nov; 111(43):12573-81. PubMed ID: 17927240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution.
    Ferreira DE; Florentino BP; Rocha WR; Nome F
    J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions.
    Acevedo O; Jorgensen WL
    Acc Chem Res; 2010 Jan; 43(1):142-51. PubMed ID: 19728702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-Energy Landscape and Proton Transfer Pathways in Oxidative Deamination by Methylamine Dehydrogenase.
    Zelleke T; Marx D
    Chemphyschem; 2017 Jan; 18(2):208-222. PubMed ID: 27860041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study.
    Lima MC; Coutinho K; Canuto S; Rocha WR
    J Phys Chem A; 2006 Jun; 110(22):7253-61. PubMed ID: 16737277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarboxylation without CO2: why bicarbonate forms directly as trichloroacetate is converted to chloroform.
    Howe GW; Kluger R
    J Org Chem; 2014 Nov; 79(22):10972-80. PubMed ID: 25340631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why urea eliminates ammonia rather than hydrolyzes in aqueous solution.
    Alexandrova AN; Jorgensen WL
    J Phys Chem B; 2007 Feb; 111(4):720-30. PubMed ID: 17249815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling.
    Xie HB; Zhou Y; Zhang Y; Johnson JK
    J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio chemical kinetics of methyl formate decomposition: the simplest model biodiesel.
    Metcalfe WK; Simmie JM; Curran HJ
    J Phys Chem A; 2010 May; 114(17):5478-84. PubMed ID: 20380414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces.
    Plotnikov NV; Prasad BR; Chakrabarty S; Chu ZT; Warshel A
    J Phys Chem B; 2013 Oct; 117(42):12807-19. PubMed ID: 23601038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study.
    Di Valentin C; Freccero M; Zanaletti R; Sarzi-Amadè M
    J Am Chem Soc; 2001 Aug; 123(34):8366-77. PubMed ID: 11516286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen generation from methylamine using silicon carbide nanotubes as a dehydrogenation catalyst: a density functional theory study.
    Esrafili MD; Nurazar R
    J Mol Graph Model; 2015 Feb; 55():41-7. PubMed ID: 25424658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.
    Zhou CW; Kislov VV; Mebel AM
    J Phys Chem A; 2012 Feb; 116(6):1571-85. PubMed ID: 22239650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.