BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21995748)

  • 1. Development of the ability to inhibit a prepotent response: influence of working memory and processing speed.
    Urben S; Van der Linden M; Barisnikov K
    Br J Dev Psychol; 2011 Nov; 29(Pt 4):981-98. PubMed ID: 21995748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship of working memory, inhibition, and response variability in child psychopathology.
    Verté S; Geurts HM; Roeyers H; Oosterlaan J; Sergeant JA
    J Neurosci Methods; 2006 Feb; 151(1):5-14. PubMed ID: 16427129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the developmental constraints on working memory span performance.
    Bayliss DM; Jarrold C; Baddeley AD; Gunn DM; Leigh E
    Dev Psychol; 2005 Jul; 41(4):579-97. PubMed ID: 16060806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender-specific development of auditory information processing in children: an ERP study.
    Nanova P; Lyamova L; Hadjigeorgieva M; Kolev V; Yordanova J
    Clin Neurophysiol; 2008 Sep; 119(9):1992-2003. PubMed ID: 18579438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the development of response inhibition in young children using a modified day-night task.
    McAuley T; Christ SE; White DA
    Dev Neuropsychol; 2011; 36(5):539-51. PubMed ID: 21667359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental relations between working memory and inhibitory control.
    Roncadin C; Pascual-Leone J; Rich JB; Dennis M
    J Int Neuropsychol Soc; 2007 Jan; 13(1):59-67. PubMed ID: 17166304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: a comparison of young and elderly participants.
    Grandjean J; Collette F
    Brain Cogn; 2011 Nov; 77(2):237-47. PubMed ID: 21885178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central executive involvement in children's spatial memory.
    Ang SY; Lee K
    Memory; 2008 Nov; 16(8):918-33. PubMed ID: 18802804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive processes in the development of TOL performance.
    Asato MR; Sweeney JA; Luna B
    Neuropsychologia; 2006; 44(12):2259-69. PubMed ID: 16797612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability to activate and inhibit speeded responses: separate developmental trends.
    Band GP; van der Molen MW; Overtoom CC; Verbaten MN
    J Exp Child Psychol; 2000 Apr; 75(4):263-90. PubMed ID: 10698613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age- and schooling-related effects on executive functions in young children: a natural experiment.
    Burrage MS; Ponitz CC; McCready EA; Shah P; Sims BC; Jewkes AM; Morrison FJ
    Child Neuropsychol; 2008 Nov; 14(6):510-24. PubMed ID: 18982508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integration of cognition and emotion during infancy and early childhood: regulatory processes associated with the development of working memory.
    Wolfe CD; Bell MA
    Brain Cogn; 2007 Oct; 65(1):3-13. PubMed ID: 17630061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the relationship among ADHD symptomatology, creativity, and neuropsychological functioning in children.
    Healey D; Rucklidge JJ
    Child Neuropsychol; 2006 Dec; 12(6):421-38. PubMed ID: 16952888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Executive functions in children aged 6 to 13: a dimensional and developmental study.
    Brocki KC; Bohlin G
    Dev Neuropsychol; 2004; 26(2):571-93. PubMed ID: 15456685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative contributions of processing speed and cognitive load to working memory accuracy in multiple sclerosis.
    Leavitt VM; Lengenfelder J; Moore NB; Chiaravalloti ND; DeLuca J
    J Clin Exp Neuropsychol; 2011 Jun; 33(5):580-6. PubMed ID: 21229437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory and inhibitory control in early childhood: Contributions from physiology, temperament, and language.
    Wolfe CD; Bell MA
    Dev Psychobiol; 2004 Jan; 44(1):68-83. PubMed ID: 14704991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of cognitive processes from late childhood to adulthood.
    Luna B; Garver KE; Urban TA; Lazar NA; Sweeney JA
    Child Dev; 2004; 75(5):1357-72. PubMed ID: 15369519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of working memory updating and processing speed in mediating age-related differences in fluid intelligence.
    Chen T; Li D
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2007 Nov; 14(6):631-46. PubMed ID: 18038360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of age and inhibitory efficiency in working memory processing and storage components.
    Blair M; Vadaga KK; Shuchat J; Li KZ
    Q J Exp Psychol (Hove); 2011 Jun; 64(6):1157-72. PubMed ID: 21298594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suboptimal processing strategy and working-memory impairments predict abstraction deficit in schizophrenia.
    Silver H; Goodman C; Bilker WB; Knoll G; Gur R; Povar G
    J Clin Exp Neuropsychol; 2007 Nov; 29(8):823-30. PubMed ID: 18030633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.