These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 21996038)
1. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides. Mulvihill CM; Deber CM Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038 [TBL] [Abstract][Full Text] [Related]
2. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin. Wehbi H; Rath A; Glibowicka M; Deber CM Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627 [TBL] [Abstract][Full Text] [Related]
3. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Choi MY; Cardarelli L; Therien AG; Deber CM Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503 [TBL] [Abstract][Full Text] [Related]
4. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679 [TBL] [Abstract][Full Text] [Related]
5. Loop sequence dictates the secondary structure of a human membrane protein hairpin. Nadeau VG; Deber CM Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803 [TBL] [Abstract][Full Text] [Related]
6. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment. Partridge AW; Melnyk RA; Deber CM Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281 [TBL] [Abstract][Full Text] [Related]
7. Interhelical hydrogen bonds in the CFTR membrane domain. Therien AG; Grant FE; Deber CM Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889 [TBL] [Abstract][Full Text] [Related]
8. Structural effects of extracellular loop mutations in CFTR helical hairpins. Chang YH; Stone TA; Chin S; Glibowicka M; Bear CE; Deber CM Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1092-1098. PubMed ID: 29307731 [TBL] [Abstract][Full Text] [Related]
9. Evidence that the translocon may function as a hydropathy partitioning filter. Mulvihill CM; Deber CM Biochim Biophys Acta; 2010 Oct; 1798(10):1995-8. PubMed ID: 20646997 [TBL] [Abstract][Full Text] [Related]
10. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds. Loo TW; Clarke DM Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276 [TBL] [Abstract][Full Text] [Related]
11. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. Krainer G; Schenkel M; Hartmann A; Ravamehr-Lake D; Deber CM; Schlierf M J Biol Chem; 2020 Feb; 295(7):1985-1991. PubMed ID: 31882543 [TBL] [Abstract][Full Text] [Related]
12. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574 [TBL] [Abstract][Full Text] [Related]
13. Sequence hydropathy dominates membrane protein response to detergent solubilization. Nadeau VG; Rath A; Deber CM Biochemistry; 2012 Aug; 51(31):6228-37. PubMed ID: 22779403 [TBL] [Abstract][Full Text] [Related]
14. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Rath A; Glibowicka M; Nadeau VG; Chen G; Deber CM Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1760-5. PubMed ID: 19181854 [TBL] [Abstract][Full Text] [Related]
15. Design and characterization of a membrane protein unfolding platform in lipid bilayers. Nadeau VG; Gao A; Deber CM PLoS One; 2015; 10(3):e0120253. PubMed ID: 25799099 [TBL] [Abstract][Full Text] [Related]