These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 21996623)
1. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623 [TBL] [Abstract][Full Text] [Related]
2. [Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds]. Sun R; Pan G; Zhang L; Du J; Xiong C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):91-6. PubMed ID: 17333899 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]
4. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance. Rouholamin D; van Grunsven W; Reilly GC; Smith PJ Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. Ren Q; Zhu X; Li W; Wu M; Cui S; Ling Y; Ma X; Wang G; Wang L; Zheng W Int J Biol Macromol; 2022 Apr; 205():740-748. PubMed ID: 35331790 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Ji C; Annabi N; Khademhosseini A; Dehghani F Acta Biomater; 2011 Apr; 7(4):1653-64. PubMed ID: 21130905 [TBL] [Abstract][Full Text] [Related]
7. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692 [TBL] [Abstract][Full Text] [Related]
8. Proliferation of chondrocytes on porous poly(DL-lactide)/chitosan scaffolds. Wu H; Wan Y; Cao X; Wu Q Acta Biomater; 2008 Jan; 4(1):76-87. PubMed ID: 17986398 [TBL] [Abstract][Full Text] [Related]
9. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398 [TBL] [Abstract][Full Text] [Related]
10. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352 [TBL] [Abstract][Full Text] [Related]
11. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds]. Quan D; Liao K; Luo B; Lu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533 [TBL] [Abstract][Full Text] [Related]
12. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering. Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749 [TBL] [Abstract][Full Text] [Related]
13. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
14. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Poursamar SA; Hatami J; Lehner AN; da Silva CL; Ferreira FC; Antunes AP Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():63-70. PubMed ID: 25579897 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319 [TBL] [Abstract][Full Text] [Related]
16. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. Koupaei N; Karkhaneh A; Daliri Joupari M J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends. Zhou C; Ma L; Li W; Yao D Biofabrication; 2011 Dec; 3(4):045003. PubMed ID: 21904025 [TBL] [Abstract][Full Text] [Related]
19. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
20. Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Bianco A; Calderone M; Cacciotti I Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1067-77. PubMed ID: 23827544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]