These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21996755)

  • 1. Neutron diffraction study of water freezing on aircraft engine combustor soot.
    Tishkova V; Demirdjian B; Ferry D; Johnson M
    Phys Chem Chem Phys; 2011 Dec; 13(46):20729-35. PubMed ID: 21996755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting and hydration of insoluble soot particles in the upper troposphere.
    Persiantseva NM; Popovicheva OB; Shonija NK
    J Environ Monit; 2004 Dec; 6(12):939-45. PubMed ID: 15568040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the hygroscopic effect of soot aging in the atmosphere: laboratory simulations.
    Popovicheva OB; Persiantseva NM; Kireeva ED; Khokhlova TD; Shonija NK
    J Phys Chem A; 2011 Jan; 115(3):298-306. PubMed ID: 21186790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4.
    Loukhovitskaya EE; Talukdar RK; Ravishankara AR
    J Phys Chem A; 2013 Jun; 117(23):4928-36. PubMed ID: 23682559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate.
    Jacobson MZ
    J Phys Chem A; 2006 Jun; 110(21):6860-73. PubMed ID: 16722702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2008 Jun; 10(22):3287-301. PubMed ID: 18500406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.
    Journet E; Le Calvé S; Mirabel P
    J Phys Chem B; 2005 Jul; 109(29):14112-7. PubMed ID: 16852772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric and neutron diffraction studies on transitions of water confined in nanoporous copper rubeanate.
    Yamada T; Yonamine R; Yamada T; Kitagawa H; Yamamuro O
    J Phys Chem B; 2010 Jul; 114(25):8405-9. PubMed ID: 20521805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.
    Gao RS; Popp PJ; Fahey DW; Marcy TP; Herman RL; Weinstock EM; Baumgardner DG; Garrett TJ; Rosenlof KH; Thompson TL; Bui PT; Ridley BA; Wofsy SC; Toon OB; Tolbert MA; Kärcher B; Peter T; Hudson PK; Weinheimer AJ; Heymsfield AJ
    Science; 2004 Jan; 303(5657):516-20. PubMed ID: 14739457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous aerosol may build up an elevated upper tropospheric ice supersaturation and form mixed-phase particles after freezing.
    Bogdan A; Molina MJ
    J Phys Chem A; 2010 Mar; 114(8):2821-9. PubMed ID: 20136162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dependence of soot particle ice nucleation ability on its volatile content.
    Gao K; Koch HC; Zhou CW; Kanji ZA
    Environ Sci Process Impacts; 2022 Nov; 24(11):2043-2069. PubMed ID: 36043854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols.
    Brooks SD; Suter K; Olivarez L
    J Phys Chem A; 2014 Oct; 118(43):10036-47. PubMed ID: 25280086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.