BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21996914)

  • 1. Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection.
    Ghosh S; Soni J; Purwar H; Jagtap J; Pradhan A; Ghosh N; Panigrahi PK
    Opt Express; 2011 Sep; 19(20):19717-30. PubMed ID: 21996914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing multifractality in tissue refractive index: prospects for precancer detection.
    Das N; Chatterjee S; Soni J; Jagtap J; Pradhan A; Sengupta TK; Panigrahi PK; Vitkin IA; Ghosh N
    Opt Lett; 2013 Jan; 38(2):211-3. PubMed ID: 23454965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical spectroscopy detects histological hallmarks of pancreatic cancer.
    Wilson RH; Chandra M; Scheiman J; Simeone D; McKenna B; Purdy J; Mycek MA
    Opt Express; 2009 Sep; 17(20):17502-16. PubMed ID: 19907534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stokes shift spectroscopy highlights differences of cancerous and normal human tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    Opt Lett; 2012 Aug; 37(16):3360-2. PubMed ID: 23381257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of the cervix.
    Drezek RA; Richards-Kortum R; Brewer MA; Feld MS; Pitris C; Ferenczy A; Faupel ML; Follen M
    Cancer; 2003 Nov; 98(9 Suppl):2015-27. PubMed ID: 14603538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues.
    Gupta S; Nair MS; Pradhan A; Biswal NC; Agarwal N; Agarwal A; Panigrahi PK
    J Biomed Opt; 2005; 10(5):054012. PubMed ID: 16292972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection.
    Perelman LT
    Expert Rev Med Devices; 2006 Nov; 3(6):787-803. PubMed ID: 17280544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the MN antigen in cervical papanicolaou smears is an early diagnostic biomarker of cervical dysplasia.
    Liao SY; Stanbridge EJ
    Cancer Epidemiol Biomarkers Prev; 1996 Jul; 5(7):549-57. PubMed ID: 8827360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements.
    Chang SK; Arifler D; Drezek R; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):511-22. PubMed ID: 15189089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy as a diagnostic tool for detecting cervical pre-cancer.
    Chang SK; Pavlova I; Marín NM; Follen M; Richards-Kortum R
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S61-3. PubMed ID: 16419187
    [No Abstract]   [Full Text] [Related]  

  • 14. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes.
    Georgakoudi I; Jacobson BC; Müller MG; Sheets EE; Badizadegan K; Carr-Locke DL; Crum CP; Boone CW; Dasari RR; Van Dam J; Feld MS
    Cancer Res; 2002 Feb; 62(3):682-7. PubMed ID: 11830520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro.
    Ebenezar J; Aruna P; Ganesan S
    Photochem Photobiol; 2010; 86(1):77-86. PubMed ID: 19845540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer.
    Chang SK; Mirabal YN; Atkinson EN; Cox D; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2005; 10(2):024031. PubMed ID: 15910104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid.
    Karadaglić D; Wood AD; McRobbie M; Stojanović R; Herrington CS
    Cancer Epidemiol; 2009 Dec; 33(6):463-8. PubMed ID: 19926356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer.
    Tumer K; Ramanujam N; Ghosh J; Richards-Kortum R
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):953-61. PubMed ID: 9691570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters.
    Sitter B; Lundgren S; Bathen TF; Halgunset J; Fjosne HE; Gribbestad IS
    NMR Biomed; 2006 Feb; 19(1):30-40. PubMed ID: 16229059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1)H and (31)P magic angle spinning MRS of intact tissue.
    De Silva SS; Payne GS; Thomas V; Carter PG; Ind TE; deSouza NM
    NMR Biomed; 2009 Feb; 22(2):191-8. PubMed ID: 18833545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.