These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21997071)

  • 61. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip76. PubMed ID: 20147041
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical solenoid beams.
    Lee SH; Roichman Y; Grier DG
    Opt Express; 2010 Mar; 18(7):6988-93. PubMed ID: 20389718
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy.
    Cheong FC; Grier DG
    Opt Express; 2010 Mar; 18(7):6555-62. PubMed ID: 20389679
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.
    Persson M; Engström D; Frank A; Backsten J; Bengtsson J; Goksör M
    Opt Express; 2010 May; 18(11):11250-63. PubMed ID: 20588985
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Devil's vortex-lenses.
    Furlan WD; Giménez F; Calatayud A; Monsoriu JA
    Opt Express; 2009 Nov; 17(24):21891-6. PubMed ID: 19997433
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Collecting single molecules with conventional optical tweezers.
    Singer W; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011916. PubMed ID: 17358193
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stability analysis and thermal motion of optically trapped nanowires.
    Simpson SH; Hanna S
    Nanotechnology; 2012 May; 23(20):205502. PubMed ID: 22543265
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microparticle manipulation using femtosecond photonic nanojet-assisted laser cavitation.
    Shakhov A; Astafiev A; Nadtochenko V
    Opt Lett; 2018 Apr; 43(8):1858-1861. PubMed ID: 29652383
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A simple assay for local heating by optical tweezers.
    Kuo SC
    Methods Cell Biol; 1998; 55():43-5. PubMed ID: 9352510
    [No Abstract]   [Full Text] [Related]  

  • 70. Quantifying noise in optical tweezers by allan variance.
    Czerwinski F; Richardson AC; Oddershede LB
    Opt Express; 2009 Jul; 17(15):13255-69. PubMed ID: 19654731
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Calibration of nonspherical particles in optical tweezers using only position measurement.
    Bui AA; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Opt Lett; 2013 Apr; 38(8):1244-6. PubMed ID: 23595446
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Method used to measure interaction of proteins with dual-beam optical tweezers.
    Qu E; Guo H; Xu C; Liu C; Li Z; Cheng B; Zhang D
    J Biomed Opt; 2006; 11(6):064035. PubMed ID: 17212558
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Femtonewton force sensing with optically trapped nanotubes.
    Maragò OM; Jones PH; Bonaccorso F; Scardaci V; Gucciardi PG; Rozhin AG; Ferrari AC
    Nano Lett; 2008 Oct; 8(10):3211-6. PubMed ID: 18767887
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optically programmable excitonic traps.
    Alloing M; Lemaître A; Galopin E; Dubin F
    Sci Rep; 2013; 3():1578. PubMed ID: 23546532
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Manipulation of single DNA molecules by using optically projected images.
    Lin YH; Chang CM; Lee GB
    Opt Express; 2009 Aug; 17(17):15318-29. PubMed ID: 19688010
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Guided neuronal growth using optical line traps.
    Carnegie DJ; Stevenson DJ; Mazilu M; Gunn-Moore F; Dholakia K
    Opt Express; 2008 Jul; 16(14):10507-17. PubMed ID: 18607464
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical micromanipulation of nanoparticles and cells inside living zebrafish.
    Johansen PL; Fenaroli F; Evensen L; Griffiths G; Koster G
    Nat Commun; 2016 Mar; 7():10974. PubMed ID: 26996121
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Precision steering of an optical trap by electro-optic deflection.
    Valentine MT; Guydosh NR; Gutiérrez-Medina B; Fehr AN; Andreasson JO; Block SM
    Opt Lett; 2008 Mar; 33(6):599-601. PubMed ID: 18347722
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.
    Wang C; Chowdhury S; Gupta SK; Losert W
    J Biomed Opt; 2013 Apr; 18(4):045001. PubMed ID: 23545852
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Translational and rotational manipulation of filamentous cells using optically driven microrobots.
    Hu S; Hu R; Dong X; Wei T; Chen S; Sun D
    Opt Express; 2019 Jun; 27(12):16475-16482. PubMed ID: 31252872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.