These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21997321)

  • 1. Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt.
    Cano-Izquierdo JM; Ibarrola J; Almonacid M
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):2-7. PubMed ID: 21997321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data.
    Delgado Saa JF; Çetin M
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):716-24. PubMed ID: 23807456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BCI Competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG.
    Wang Y; Zhang Z; Li Y; Gao X; Gao S; Yang F
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1081-6. PubMed ID: 15188883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain-computer interface.
    Coyle D; Prasad G; McGinnity TM
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1458-71. PubMed ID: 19493851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface.
    Wang T; He B
    J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying the use of fuzzy inference systems for motor imagery classification.
    Fabien L; Anatole L; Fabrice L; Bruno A
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):322-4. PubMed ID: 17601202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Selection Applying Statistical and Neurofuzzy Methods to EEG-Based BCI.
    Martinez-Leon JA; Cano-Izquierdo JM; Ibarrola J
    Comput Intell Neurosci; 2015; 2015():781207. PubMed ID: 25977685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of movement intention by spatially filtered electromagnetic inverse solutions.
    Congedo M; Lotte F; Lécuyer A
    Phys Med Biol; 2006 Apr; 51(8):1971-89. PubMed ID: 16585840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.