BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21997344)

  • 1. Naphthalene-fused metallo-porphyrins--synthesis and spectroscopy.
    Lewtak JP; Gryko D; Bao D; Sebai E; Vakuliuk O; Ścigaj M; Gryko DT
    Org Biomol Chem; 2011 Dec; 9(23):8178-81. PubMed ID: 21997344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new route to meso-formyl porphyrins.
    Balakumar A; Muthukumaran K; Lindsey JS
    J Org Chem; 2004 Jul; 69(15):5112-5. PubMed ID: 15255746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically driven intramolecular oxidative aromatic coupling as a pathway toward π-extended porphyrins.
    Chen P; Fang Y; Kadish KM; Lewtak JP; Koszelewski D; Janiga A; Gryko DT
    Inorg Chem; 2013 Aug; 52(16):9532-8. PubMed ID: 23895324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of highly substituted naphthalene and anthracene derivatives by rhodium-catalyzed oxidative coupling of arylboronic acids with alkynes.
    Fukutani T; Hirano K; Satoh T; Miura M
    Org Lett; 2009 Nov; 11(22):5198-201. PubMed ID: 19831368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative chemistry of nickel porphyrins.
    Renner MW; Fajer J
    J Biol Inorg Chem; 2001 Oct; 6(8):823-30. PubMed ID: 11713690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal complexes of meso-amino-octaethylporphyrin and the oxidation of NiII(meso-amino-octaethylporphyrin).
    Sprutta N; Rath SP; Olmstead MM; Balch AL
    Inorg Chem; 2005 Mar; 44(5):1452-9. PubMed ID: 15732986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Schiff base expanded porphyrin macrocycle that acts as a versatile binucleating ligand for late first-row transition metals.
    Sessler JL; Tomat E; Mody TD; Lynch VM; Veauthier JM; Mirsaidov U; Markert JT
    Inorg Chem; 2005 Apr; 44(7):2125-7. PubMed ID: 15792442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of π-extended porphyrins via intramolecular oxidative coupling.
    Lewtak JP; Gryko DT
    Chem Commun (Camb); 2012 Oct; 48(81):10069-86. PubMed ID: 22649792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of indenoporphyrins, highly modified porphyrins with reduced diatropic characteristics.
    Lash TD; Smith BE; Melquist MJ; Godfrey BA
    J Org Chem; 2011 Jul; 76(13):5335-45. PubMed ID: 21598988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, spectroscopic, and electrochemical studies of 1,2-naphthalene-ring-fused tetraazachlorins, -bacteriochlorins, and -isobacteriochlorins: the separation and characterization of structural isomers.
    Makarova EA; Fukuda T; Luk Yanets EA; Kobayashi N
    Chemistry; 2005 Feb; 11(4):1235-50. PubMed ID: 15625670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, structure, and complexation properties of partially and completely reduced meso-octamethylporphyrinogens (calix[4]pyrroles).
    Blangy V; Heiss C; Khlebnikov V; Letondor C; Stoeckli-Evans H; Neier R
    Angew Chem Int Ed Engl; 2009; 48(9):1688-91. PubMed ID: 19117004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the extraordinary 4-membered pyrrole ring-contracted azeteoporphyrinoid as an intermediate in chlorin oxidation.
    Köpke T; Pink M; Zaleski JM
    Chem Commun (Camb); 2006 Dec; (47):4940-2. PubMed ID: 17136254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel syntheses and properties of meso-tetraaryl-octabromo-tetranaphtho[2,3]porphyrins (Ar4Br8TNPs).
    Jiang XZ; Cai CX; Liu JT; Uno H
    Org Biomol Chem; 2012 Apr; 10(15):3110-5. PubMed ID: 22437756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and photophysical studies of trans-AB(2)C-substituted porphyrin ligands and their zinc and copper complexes.
    Heinze K; Reinhart A
    Dalton Trans; 2008 Jan; (4):469-80. PubMed ID: 18185863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity in expanded porphyrins.
    Misra R; Chandrashekar TK
    Acc Chem Res; 2008 Feb; 41(2):265-79. PubMed ID: 18281947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of substituents and nonplanarity on nickel and copper porphyrin electrochemistry: first observation of a Cu(II)/Cu(III) reaction in nonaqueous media.
    Fang Y; Senge MO; Van Caemelbecke E; Smith KM; Medforth CJ; Zhang M; Kadish KM
    Inorg Chem; 2014 Oct; 53(19):10772-8. PubMed ID: 25253031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. meso-Aryl substituted rubyrin and its higher homologues: structural characterization and chemical properties.
    Shimizu S; Cho WS; Sessler JL; Shinokubo H; Osuka A
    Chemistry; 2008; 14(9):2668-78. PubMed ID: 18270988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast stimulated emission and structural dynamics in nickel porphyrins.
    Zhang X; Wasinger EC; Muresan AZ; Attenkofer K; Jennings G; Lindsey JS; Chen LX
    J Phys Chem A; 2007 Nov; 111(46):11736-42. PubMed ID: 17966996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel-catalyzed oxidative coupling reactions of two different terminal alkynes using O(2) as the oxidant at room temperature: facile syntheses of unsymmetric 1,3-diynes.
    Yin W; He C; Chen M; Zhang H; Lei A
    Org Lett; 2009 Feb; 11(3):709-12. PubMed ID: 19108674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CuCN-mediated cascade cyclization of 4-(2-bromophenyl)-2-butenoates: a high-yield synthesis of substituted naphthalene amino esters.
    Reddy RS; Prasad PK; Ahuja BB; Sudalai A
    J Org Chem; 2013 May; 78(10):5045-50. PubMed ID: 23593994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.