These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21997476)

  • 1. The mechanism of the water-gas shift reaction on Cu/TiO2(110) elucidated from application of density-functional theory.
    Peng SF; Ho JJ
    Phys Chem Chem Phys; 2011 Dec; 13(45):20393-400. PubMed ID: 21997476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level.
    Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA
    J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: the case of the highly active metal/CeOx/TiO2(110) catalysts.
    Graciani J; Plata JJ; Sanz JF; Liu P; Rodriguez JA
    J Chem Phys; 2010 Mar; 132(10):104703. PubMed ID: 20232980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction mechanism of CO oxidation on Cu(2)O(111): A density functional study.
    Sun BZ; Chen WK; Xu YJ
    J Chem Phys; 2010 Oct; 133(15):154502. PubMed ID: 20969398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction.
    Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M
    Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of low-temperature water gas shift reaction on copper.
    Gokhale AA; Dumesic JA; Mavrikakis M
    J Am Chem Soc; 2008 Jan; 130(4):1402-14. PubMed ID: 18181624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies.
    Zheng Z; Teo J; Chen X; Liu H; Yuan Y; Waclawik ER; Zhong Z; Zhu H
    Chemistry; 2010 Jan; 16(4):1202-11. PubMed ID: 19918811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: a periodic electrostatic embedded cluster model study.
    Ammal SC; Heyden A
    J Chem Phys; 2010 Oct; 133(16):164703. PubMed ID: 21033815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies.
    Wu X; Selloni A; Nayak SK
    J Chem Phys; 2004 Mar; 120(9):4512-6. PubMed ID: 15268619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au <--> N synergy and N-doping of metal oxide-based photocatalysts.
    Graciani J; Nambu A; Evans J; Rodriguez JA; Fdez Sanz J
    J Am Chem Soc; 2008 Sep; 130(36):12056-63. PubMed ID: 18700756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-gas shift reaction on oxide∕Cu(111): Rational catalyst screening from density functional theory.
    Liu P
    J Chem Phys; 2010 Nov; 133(20):204705. PubMed ID: 21133450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
    Yang Y; Evans J; Rodriguez JA; White MG; Liu P
    Phys Chem Chem Phys; 2010 Sep; 12(33):9909-17. PubMed ID: 20567756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.