BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21997544)

  • 1. Microstructure of supercritical CO2-in-water microemulsions: a systematic contrast variation study.
    Klostermann M; Foster T; Schweins R; Lindner P; Glatter O; Strey R; Sottmann T
    Phys Chem Chem Phys; 2011 Dec; 13(45):20289-301. PubMed ID: 21997544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.
    Yan C; Sagisaka M; James C; Rogers S; Alexander S; Eastoe J
    J Colloid Interface Sci; 2014 Dec; 435():112-8. PubMed ID: 25233224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-angle neutron scattering from giant water-in-oil microemulsion droplets. I. Ternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(5):054502. PubMed ID: 18266450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO
    Sagisaka M; Ono S; James C; Yoshizawa A; Mohamed A; Guittard F; Enick RM; Rogers SE; Czajka A; Hill C; Eastoe J
    Colloids Surf B Biointerfaces; 2018 Aug; 168():201-210. PubMed ID: 29276082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behaviour of propane- and scCO(2)-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion).
    Schwan M; Kramer LG; Sottmann T; Strey R
    Phys Chem Chem Phys; 2010 Jun; 12(23):6247-52. PubMed ID: 20431831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide/water, water/carbon dioxide emulsions and double emulsions stabilized with a nonionic biocompatible surfactant.
    Torino E; Reverchon E; Johnston KP
    J Colloid Interface Sci; 2010 Aug; 348(2):469-78. PubMed ID: 20537346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and structural transition in microemulsions stabilized by aldonamide-type surfactants.
    Zielińska K; Wilk KA; Jezierski A; Jesionowski T
    J Colloid Interface Sci; 2008 May; 321(2):408-17. PubMed ID: 18329657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.
    Zech O; Thomaier S; Bauduin P; Rück T; Touraud D; Kunz W
    J Phys Chem B; 2009 Jan; 113(2):465-73. PubMed ID: 19099438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical and rheological properties of fluorinated surfactant films adsorbed at the pressurized CO2-H2O interface.
    Tewes F; Krafft MP; Boury F
    Langmuir; 2011 Jul; 27(13):8144-52. PubMed ID: 21630699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft fluctuating surfactant membranes in supercritical CO2-microemulsions.
    Holderer O; Klostermann M; Monkenbusch M; Schweins R; Lindner P; Strey R; Richter D; Sottmann T
    Phys Chem Chem Phys; 2011 Feb; 13(8):3022-5. PubMed ID: 21049095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.
    Atkin R; Warr GG
    J Phys Chem B; 2007 Aug; 111(31):9309-16. PubMed ID: 17636975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triacylglycerol microemulsions stabilized by alkyl ethoxylate surfactants--a basic study. Phase behavior, interfacial tension and microstructure.
    Engelskirchen S; Elsner N; Sottmann T; Strey R
    J Colloid Interface Sci; 2007 Aug; 312(1):114-21. PubMed ID: 17547932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum tail length of fluorinated double-tail anionic surfactant for water/supercritical CO2 microemulsion formation.
    Sagisaka M; Koike D; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K
    Langmuir; 2007 Aug; 23(17):8784-8. PubMed ID: 17637005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared spectroscopic study of a water-in-supercritical CO2 microemulsion as a function of the water content.
    Takebayashi Y; Sagisaka M; Sue K; Yoda S; Hakuta Y; Furuya T
    J Phys Chem B; 2011 May; 115(19):6111-8. PubMed ID: 21504176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron scattering study of the structural change induced by photopolymerization of AOT/D2O/dodecyl acrylate inverse microemulsions.
    Marszalek J; Pojman JA; Page KA
    Langmuir; 2008 Dec; 24(23):13694-700. PubMed ID: 18980349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase behavior of CO2-expanded fluorinated microemulsions.
    Kho YW; Conrad DC; Knutson BL
    Langmuir; 2004 Mar; 20(7):2590-7. PubMed ID: 15835128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence.
    Wilk KA; Zielińska K; Hamerska-Dudra A; Jezierski A
    J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled reverse micelles in supercritical CO2 entrap protein in native state.
    Chaitanya VS; Senapati S
    J Am Chem Soc; 2008 Feb; 130(6):1866-70. PubMed ID: 18198866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.