These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21997843)

  • 1. High to ultra-high power electrical energy storage.
    Sherrill SA; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Dec; 13(46):20714-23. PubMed ID: 21997843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.
    Yao K; Chen S; Rahimabady M; Mirshekarloo MS; Yu S; Tay FE; Sritharan T; Lu L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1968-74. PubMed ID: 21937333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges facing lithium batteries and electrical double-layer capacitors.
    Choi NS; Chen Z; Freunberger SA; Ji X; Sun YK; Amine K; Yushin G; Nazar LF; Cho J; Bruce PG
    Angew Chem Int Ed Engl; 2012 Oct; 51(40):9994-10024. PubMed ID: 22965900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanomaterials for advanced energy conversion and storage.
    Dai L; Chang DW; Baek JB; Lu W
    Small; 2012 Apr; 8(8):1130-66. PubMed ID: 22383334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.
    El-Kady MF; Strong V; Dubin S; Kaner RB
    Science; 2012 Mar; 335(6074):1326-30. PubMed ID: 22422977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-power electrochemical energy storage system employing stable radical pseudocapacitors.
    Maruyama H; Nakano H; Nakamoto M; Sekiguchi A
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1324-8. PubMed ID: 24352853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous nanostructured electrode materials for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    Chem Commun (Camb); 2011 Feb; 47(5):1384-404. PubMed ID: 21109866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.
    Simon P; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3457-67. PubMed ID: 20566518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of molecular modelling of electric double layer capacitors.
    Burt R; Birkett G; Zhao XS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6519-38. PubMed ID: 24589998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two dimensional nanomaterials for flexible supercapacitors.
    Peng X; Peng L; Wu C; Xie Y
    Chem Soc Rev; 2014 May; 43(10):3303-23. PubMed ID: 24614864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.
    Yin J; Qi L; Wang H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2762-8. PubMed ID: 22500466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured electrodes for high-performance pseudocapacitors.
    Lu Q; Chen JG; Xiao JQ
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):1882-9. PubMed ID: 23307657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.
    Wessells CD; McDowell MT; Peddada SV; Pasta M; Huggins RA; Cui Y
    ACS Nano; 2012 Feb; 6(2):1688-94. PubMed ID: 22283739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant energy storage and power density negative capacitance superlattices.
    Cheema SS; Shanker N; Hsu SL; Schaadt J; Ellis NM; Cook M; Rastogi R; Pilawa-Podgurski RCN; Ciston J; Mohamed M; Salahuddin S
    Nature; 2024 May; 629(8013):803-809. PubMed ID: 38593860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.