These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21997843)

  • 21. Nanoengineering strategies for metal-insulator-metal electrostatic nanocapacitors.
    Haspert LC; Lee SB; Rubloff GW
    ACS Nano; 2012 Apr; 6(4):3528-36. PubMed ID: 22394362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors.
    Lin T; Liu F; Xu F; Bi H; Du Y; Tang Y; Huang F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25306-12. PubMed ID: 26517402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage.
    Gan Z; Yin J; Xu X; Cheng Y; Yu T
    ACS Nano; 2022 Apr; 16(4):5131-5152. PubMed ID: 35293209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors.
    Yuan CZ; Gao B; Shen LF; Yang SD; Hao L; Lu XJ; Zhang F; Zhang LJ; Zhang XG
    Nanoscale; 2011 Feb; 3(2):529-45. PubMed ID: 21063631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lithium-Sulfur Capacitors.
    Kim MH; Kim HK; Xi K; Kumar RV; Jung DS; Kim KB; Roh KC
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6199-6206. PubMed ID: 29272102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage.
    Wei L; Liu QX; Zhu B; Liu WJ; Ding SJ; Lu HL; Jiang A; Zhang DW
    Nanoscale Res Lett; 2016 Dec; 11(1):213. PubMed ID: 27097913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.
    Guo S; Wang E
    Acc Chem Res; 2011 Jul; 44(7):491-500. PubMed ID: 21612197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors.
    Yuan H; Shimotani H; Ye J; Yoon S; Aliah H; Tsukazaki A; Kawasaki M; Iwasa Y
    J Am Chem Soc; 2010 Dec; 132(51):18402-7. PubMed ID: 21141862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene Materials for Electrochemical Capacitors.
    Chen J; Li C; Shi G
    J Phys Chem Lett; 2013 Apr; 4(8):1244-53. PubMed ID: 26282137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development.
    Ismail KBM; Arun Kumar M; Mahalingam S; Kim J; Atchudan R
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices.
    Xu T; Wang D; Li Z; Chen Z; Zhang J; Hu T; Zhang X; Shen L
    Nanomicro Lett; 2022 Jun; 14(1):126. PubMed ID: 35699769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution synthesis of metal oxides for electrochemical energy storage applications.
    Xia X; Zhang Y; Chao D; Guan C; Zhang Y; Li L; Ge X; Bacho IM; Tu J; Fan HJ
    Nanoscale; 2014 May; 6(10):5008-48. PubMed ID: 24696018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.
    Wu ZS; Ren W; Wang DW; Li F; Liu B; Cheng HM
    ACS Nano; 2010 Oct; 4(10):5835-42. PubMed ID: 20857919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal design strategies for electrostatic energy storage in quantum multiwell heterostructures.
    Grigorenko I; Rabitz H
    J Chem Phys; 2010 Aug; 133(5):054106. PubMed ID: 20707525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards sustainable and renewable systems for electrochemical energy storage.
    Tarascon JM
    ChemSusChem; 2008; 1(8-9):777-9. PubMed ID: 18683264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon.
    Korenblit Y; Rose M; Kockrick E; Borchardt L; Kvit A; Kaskel S; Yushin G
    ACS Nano; 2010 Mar; 4(3):1337-44. PubMed ID: 20180559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.
    Su DS; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):136-68. PubMed ID: 20157927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ infrared spectroscopic studies of electrochemical energy conversion and storage.
    Li JT; Zhou ZY; Broadwell I; Sun SG
    Acc Chem Res; 2012 Apr; 45(4):485-94. PubMed ID: 22264174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.