BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 21998005)

  • 21. A physiologically based toxicokinetic model for dietary uptake of hydrophobic organic compounds by fish: II. simulation of chronic exposure scenarios.
    Nichols JW; Fitzsimmons PN; Whiteman FW
    Toxicol Sci; 2004 Feb; 77(2):219-29. PubMed ID: 14657516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioaccumulation potential of air contaminants: combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals.
    Veltman K; McKone TE; Huijbregts MA; Hendriks AJ
    Toxicol Appl Pharmacol; 2009 Jul; 238(1):47-55. PubMed ID: 19389415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular structure-based prediction of human abdominal skin permeability coefficients for several organic compounds.
    Poulin P; Krishnan K
    J Toxicol Environ Health A; 2001 Feb; 62(3):143-59. PubMed ID: 11212942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of models for the estimation of biological partition coefficients.
    Payne MP; Kenny LC
    J Toxicol Environ Health A; 2002 Jul; 65(13):897-931. PubMed ID: 12133236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis.
    Himmelstein MW; Carpenter SC; Evans MV; Hinderliter PM; Kenyon EM
    Toxicol Sci; 2004 May; 79(1):28-37. PubMed ID: 14976335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MTBE inhaled alone and in combination with gasoline vapor: uptake, distribution, metabolism, and excretion in rats.
    Benson JM; Barr EB; Krone JR
    Res Rep Health Eff Inst; 2001 May; (102):73-94; discussion 95-109. PubMed ID: 11504149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manganese tissue dosimetry in rats and monkeys: accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling.
    Nong A; Taylor MD; Clewell HJ; Dorman DC; Andersen ME
    Toxicol Sci; 2009 Mar; 108(1):22-34. PubMed ID: 19098275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological monitoring of tetrahydrofuran: contribution of a physiologically based pharmacokinetic model.
    Droz PO; Berode M; Jang JY
    Am Ind Hyg Assoc J; 1999; 60(2):243-8. PubMed ID: 10222575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of biosolubility on pulmonary uptake and disposition of gases and vapors of lipophilic chemicals.
    Fiserova-Bergerova V; Tichy M; Di Carlo FJ
    Drug Metab Rev; 1984; 15(5-6):1033-70. PubMed ID: 6396052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generic parameterization for a pharmacokinetic model to predict Cd concentrations in several tissues of different fish species.
    Franco-Uría A; Otero-Muras I; Balsa-Canto E; Alonso AA; Roca E
    Chemosphere; 2010 Apr; 79(4):377-86. PubMed ID: 20202672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilayered dermal subcompartments for modeling chemical absorption.
    Bookout RL; McDaniel CR; Quinn DW; McDougal JN
    SAR QSAR Environ Res; 1996; 5(3):133-50. PubMed ID: 9114511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiologically based modeling of 2-butoxyethanol disposition in rats following different routes of exposure.
    Shyr LJ; Sabourin PJ; Medinsky MA; Birnbaum LS; Henderson RF
    Environ Res; 1993 Nov; 63(2):202-18. PubMed ID: 8243415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children.
    Price K; Haddad S; Krishnan K
    J Toxicol Environ Health A; 2003 Mar; 66(5):417-33. PubMed ID: 12712630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Use of the ACSL simulation language for physiologic toxicokinetic models].
    Kostrzewski P; Jałowiecki P
    Med Pr; 2000; 51(5):447-56. PubMed ID: 11199174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
    Pelekis M; Gephart LA; Lerman SE
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):12-20. PubMed ID: 11259175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.