BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 21998215)

  • 1. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications.
    Hattangadi SM; Wong P; Zhang L; Flygare J; Lodish HF
    Blood; 2011 Dec; 118(24):6258-68. PubMed ID: 21998215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage-Specific Regulation of Erythropoiesis and Its Implications in
    Singh VK; Saini A; Kalsan M; Kumar N; Chandra R
    J Stem Cells; 2016; 11(3):149-169. PubMed ID: 28296879
    [No Abstract]   [Full Text] [Related]  

  • 3. MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway.
    Kumkhaek C; Aerbajinai W; Liu W; Zhu J; Uchida N; Kurlander R; Hsieh MM; Tisdale JF; Rodgers GP
    Blood; 2013 Apr; 121(16):3216-27. PubMed ID: 23327923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation.
    Willcockson MA; Taylor SJ; Ghosh S; Healton SE; Wheat JC; Wilson TJ; Steidl U; Skoultchi AI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17841-17847. PubMed ID: 31431533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.
    Lodish H; Flygare J; Chou S
    IUBMB Life; 2010 Jul; 62(7):492-6. PubMed ID: 20306512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal erythropoiesis and the pathophysiology of chronic anemia.
    Koury MJ
    Blood Rev; 2014 Mar; 28(2):49-66. PubMed ID: 24560123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.
    Xiang J; Wu DC; Chen Y; Paulson RF
    Blood; 2015 Mar; 125(11):1803-12. PubMed ID: 25608563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development.
    Eshghi S; Vogelezang MG; Hynes RO; Griffith LG; Lodish HF
    J Cell Biol; 2007 Jun; 177(5):871-80. PubMed ID: 17548514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Analysis of Erythroid Progenitors by Colony-Forming Assays.
    Palis J; Koniski A
    Methods Mol Biol; 2018; 1698():117-132. PubMed ID: 29076087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of erythroid progenitors induced by erythropoietic activity in Xenopus laevis.
    Nogawa-Kosaka N; Sugai T; Nagasawa K; Tanizaki Y; Meguro M; Aizawa Y; Maekawa S; Adachi M; Kuroki R; Kato T
    J Exp Biol; 2011 Mar; 214(Pt 6):921-7. PubMed ID: 21346119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis.
    Dulmovits BM; Hom J; Narla A; Mohandas N; Blanc L
    Curr Opin Hematol; 2017 May; 24(3):159-166. PubMed ID: 28099275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis.
    Liao C; Hardison RC; Kennett MJ; Carlson BA; Paulson RF; Prabhu KS
    Blood; 2018 Jun; 131(23):2568-2580. PubMed ID: 29615406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis.
    Deleschaux C; Moras M; Lefevre SD; Ostuni MA
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.
    Shi J; Yuan B; Hu W; Lodish H
    Exp Hematol; 2016 Nov; 44(11):1044-1058.e5. PubMed ID: 27473563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
    Lee HY; Gao X; Barrasa MI; Li H; Elmes RR; Peters LL; Lodish HF
    Nature; 2015 Jun; 522(7557):474-7. PubMed ID: 25970251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche.
    Hao S; Xiang J; Wu DC; Fraser JW; Ruan B; Cai J; Patterson AD; Lai ZC; Paulson RF
    Blood Adv; 2019 Jul; 3(14):2205-2217. PubMed ID: 31324641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro.
    von Lindern M; Zauner W; Mellitzer G; Steinlein P; Fritsch G; Huber K; Löwenberg B; Beug H
    Blood; 1999 Jul; 94(2):550-9. PubMed ID: 10397722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress.
    Peslak SA; Wenger J; Bemis JC; Kingsley PD; Koniski AD; McGrath KE; Palis J
    Blood; 2012 Sep; 120(12):2501-11. PubMed ID: 22889760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.
    Wong P; Hattangadi SM; Cheng AW; Frampton GM; Young RA; Lodish HF
    Blood; 2011 Oct; 118(16):e128-38. PubMed ID: 21860024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors.
    Zhang L; Prak L; Rayon-Estrada V; Thiru P; Flygare J; Lim B; Lodish HF
    Nature; 2013 Jul; 499(7456):92-6. PubMed ID: 23748442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.