These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 21998276)
1. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Hobbs JK; Shepherd C; Saul DJ; Demetras NJ; Haaning S; Monk CR; Daniel RM; Arcus VL Mol Biol Evol; 2012 Feb; 29(2):825-35. PubMed ID: 21998276 [TBL] [Abstract][Full Text] [Related]
2. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. Hobbs JK; Prentice EJ; Groussin M; Arcus VL J Mol Evol; 2015 Oct; 81(3-4):110-20. PubMed ID: 26349578 [TBL] [Abstract][Full Text] [Related]
3. Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. Watanabe K; Ohkuri T; Yokobori S; Yamagishi A J Mol Biol; 2006 Jan; 355(4):664-74. PubMed ID: 16309701 [TBL] [Abstract][Full Text] [Related]
4. Parallel adaptations to high temperatures in the Archaean eon. Boussau B; Blanquart S; Necsulea A; Lartillot N; Gouy M Nature; 2008 Dec; 456(7224):942-5. PubMed ID: 19037246 [TBL] [Abstract][Full Text] [Related]
5. Is thermophily a transferrable property in bacteria? Lindsay JA Crit Rev Microbiol; 1995; 21(3):165-74. PubMed ID: 8845061 [TBL] [Abstract][Full Text] [Related]
6. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Gaucher EA; Govindarajan S; Ganesh OK Nature; 2008 Feb; 451(7179):704-7. PubMed ID: 18256669 [TBL] [Abstract][Full Text] [Related]
7. Protein disulfide oxidoreductases and the evolution of thermophily: was the last common ancestor a heat-loving microbe? Becerra A; Delaye L; Lazcano A; Orgel LE J Mol Evol; 2007 Sep; 65(3):296-303. PubMed ID: 17726569 [TBL] [Abstract][Full Text] [Related]
8. Directed evolution study of temperature adaptation in a psychrophilic enzyme. Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Johns GC; Somero GN Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697 [TBL] [Abstract][Full Text] [Related]
11. Improvement of Bacillus circulans beta-amylase activity attained using the ancestral mutation method. Yamashiro K; Yokobori S; Koikeda S; Yamagishi A Protein Eng Des Sel; 2010 Jul; 23(7):519-28. PubMed ID: 20406825 [TBL] [Abstract][Full Text] [Related]
12. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234 [TBL] [Abstract][Full Text] [Related]
13. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
14. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
15. Extremely thermophilic translation system in the common ancestor commonote: ancestral mutants of Glycyl-tRNA synthetase from the extreme thermophile Thermus thermophilus. Shimizu H; Yokobori S; Ohkuri T; Yokogawa T; Nishikawa K; Yamagishi A J Mol Biol; 2007 Jun; 369(4):1060-9. PubMed ID: 17477933 [TBL] [Abstract][Full Text] [Related]
16. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases. Mahdavi A; Sajedi RH; Asghari SM; Taghdir M; Rassa M Int J Biol Macromol; 2011 Dec; 49(5):1038-45. PubMed ID: 21907234 [TBL] [Abstract][Full Text] [Related]
17. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Akanuma S; Yamagishi A; Tanaka N; Oshima T Protein Sci; 1998 Mar; 7(3):698-705. PubMed ID: 9541402 [TBL] [Abstract][Full Text] [Related]
18. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
19. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729 [TBL] [Abstract][Full Text] [Related]
20. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]