BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21998579)

  • 1. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti.
    Castillo J; Brown MR; Strand MR
    PLoS Pathog; 2011 Oct; 7(10):e1002274. PubMed ID: 21998579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti.
    Gulia-Nuss M; Robertson AE; Brown MR; Strand MR
    PLoS One; 2011; 6(5):e20401. PubMed ID: 21647424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin-like peptide 3 stimulates hemocytes to proliferate in anautogenous and facultatively autogenous mosquitoes.
    Martinson EO; Chen K; Valzania L; Brown MR; Strand MR
    J Exp Biol; 2022 Mar; 225(5):. PubMed ID: 35129195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways.
    Valzania L; Mattee MT; Strand MR; Brown MR
    Dev Biol; 2019 Oct; 454(1):85-95. PubMed ID: 31153832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti.
    Brown MR; Clark KD; Gulia M; Zhao Z; Garczynski SF; Crim JW; Suderman RJ; Strand MR
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5716-21. PubMed ID: 18391205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.
    Gulia-Nuss M; Elliot A; Brown MR; Strand MR
    J Insect Physiol; 2015 Nov; 82():8-16. PubMed ID: 26255841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti.
    Castillo JC; Robertson AE; Strand MR
    Insect Biochem Mol Biol; 2006 Dec; 36(12):891-903. PubMed ID: 17098164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities.
    Wen Z; Gulia M; Clark KD; Dhara A; Crim JW; Strand MR; Brown MR
    Mol Cell Endocrinol; 2010 Oct; 328(1-2):47-55. PubMed ID: 20643184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti.
    Dhara A; Eum JH; Robertson A; Gulia-Nuss M; Vogel KJ; Clark KD; Graf R; Brown MR; Strand MR
    Insect Biochem Mol Biol; 2013 Dec; 43(12):1100-8. PubMed ID: 24076067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid-dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito
    Ling L; Raikhel AS
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2303234120. PubMed ID: 37579141
    [No Abstract]   [Full Text] [Related]  

  • 11. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti.
    Chen K; Dou X; Eum JH; Harrison RE; Brown MR; Strand MR
    Insect Biochem Mol Biol; 2023 Dec; 163():104028. PubMed ID: 37913852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti.
    Vogel KJ; Brown MR; Strand MR
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5057-62. PubMed ID: 25848040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti.
    Hillyer JF; Christensen BM
    Histochem Cell Biol; 2002 May; 117(5):431-40. PubMed ID: 12029490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection.
    Choi YJ; Fuchs JF; Mayhew GF; Yu HE; Christensen BM
    Insect Biochem Mol Biol; 2012 Oct; 42(10):729-38. PubMed ID: 22796331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.
    Bryant B; Macdonald W; Raikhel AS
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti.
    Roy SG; Raikhel AS
    FASEB J; 2012 Mar; 26(3):1334-42. PubMed ID: 22159149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle.
    Dou X; Chen K; Brown MR; Strand MR
    Insect Sci; 2023 Apr; 30(2):425-442. PubMed ID: 36056560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium influx enhances neuropeptide activation of ecdysteroid hormone production by mosquito ovaries.
    McKinney DA; Eum JH; Dhara A; Strand MR; Brown MR
    Insect Biochem Mol Biol; 2016 Mar; 70():160-9. PubMed ID: 26772671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito
    Ling L; Raikhel AS
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae).
    Telang A; Rechel JA; Brandt JR; Donnell DM
    J Insect Physiol; 2013 Mar; 59(3):283-94. PubMed ID: 23238126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.