These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 21998654)
1. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. Alphey N; Alphey L; Bonsall MB PLoS One; 2011; 6(10):e25384. PubMed ID: 21998654 [TBL] [Abstract][Full Text] [Related]
2. Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Winskill P; Harris AF; Morgan SA; Stevenson J; Raduan N; Alphey L; McKemey AR; Donnelly CA Parasit Vectors; 2014 Feb; 7():68. PubMed ID: 24524678 [TBL] [Abstract][Full Text] [Related]
3. A reduce and replace strategy for suppressing vector-borne diseases: insights from a deterministic model. Robert MA; Okamoto K; Lloyd AL; Gould F PLoS One; 2013; 8(9):e73233. PubMed ID: 24023839 [TBL] [Abstract][Full Text] [Related]
4. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks. Seirin Lee S; Baker RE; Gaffney EA; White SM J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633 [TBL] [Abstract][Full Text] [Related]
5. Sterile insect technique with accidental releases of sterile females. Impact on mosquito-borne diseases control when viruses are circulating. Dumont Y; Yatat-Djeumen IV Math Biosci; 2022 Jan; 343():108724. PubMed ID: 34748880 [TBL] [Abstract][Full Text] [Related]
6. Genetic elimination of dengue vector mosquitoes. Wise de Valdez MR; Nimmo D; Betz J; Gong HF; James AA; Alphey L; Black WC Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4772-5. PubMed ID: 21383140 [TBL] [Abstract][Full Text] [Related]
7. Late-acting dominant lethal genetic systems and mosquito control. Phuc HK; Andreasen MH; Burton RS; Vass C; Epton MJ; Pape G; Fu G; Condon KC; Scaife S; Donnelly CA; Coleman PG; White-Cooper H; Alphey L BMC Biol; 2007 Mar; 5():11. PubMed ID: 17374148 [TBL] [Abstract][Full Text] [Related]
8. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Oléron Evans TP; Bishop SR Math Biosci; 2014 Aug; 254():6-27. PubMed ID: 24929226 [TBL] [Abstract][Full Text] [Related]
9. The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model. Knerer G; Currie CSM; Brailsford SC PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008805. PubMed ID: 33095791 [TBL] [Abstract][Full Text] [Related]
10. Dengue vector control strategies in an urban setting: an economic modelling assessment. Luz PM; Vanni T; Medlock J; Paltiel AD; Galvani AP Lancet; 2011 May; 377(9778):1673-80. PubMed ID: 21546076 [TBL] [Abstract][Full Text] [Related]
11. About contamination by sterile females and residual male fertility on the effectiveness of the sterile insect technique. Impact on disease vector control and disease control. Dumont Y; Yatat-Djeumen IV Math Biosci; 2024 Apr; 370():109165. PubMed ID: 38387836 [TBL] [Abstract][Full Text] [Related]
12. An economic evaluation of vector control in the age of a dengue vaccine. Fitzpatrick C; Haines A; Bangert M; Farlow A; Hemingway J; Velayudhan R PLoS Negl Trop Dis; 2017 Aug; 11(8):e0005785. PubMed ID: 28806786 [TBL] [Abstract][Full Text] [Related]
13. Genetically Modified Aedes aegypti to Control Dengue: A Review. Qsim M; Ashfaq UA; Yousaf MZ; Masoud MS; Rasul I; Noor N; Hussain A Crit Rev Eukaryot Gene Expr; 2017; 27(4):331-340. PubMed ID: 29283327 [TBL] [Abstract][Full Text] [Related]
14. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Urdaneta-Marquez L; Failloux AB Infect Genet Evol; 2011 Mar; 11(2):253-61. PubMed ID: 21167319 [TBL] [Abstract][Full Text] [Related]
15. Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: study protocol for a cluster-randomized controlled trial. Overgaard HJ; Pientong C; Thaewnongiew K; Bangs MJ; Ekalaksananan T; Aromseree S; Phanitchat T; Phanthanawiboon S; Fustec B; Corbel V; Cerqueira D; Alexander N Trials; 2018 Feb; 19(1):122. PubMed ID: 29458406 [TBL] [Abstract][Full Text] [Related]
16. Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species. Nordin O; Donald W; Ming WH; Ney TG; Mohamed KA; Halim NA; Winskill P; Hadi AA; Muhammad ZS; Lacroix R; Scaife S; McKemey AR; Beech C; Shahnaz M; Alphey L; Nimmo DD; Nazni WA; Lee HL PLoS One; 2013; 8(3):e58805. PubMed ID: 23527029 [TBL] [Abstract][Full Text] [Related]
17. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. Kittayapong P; Ninphanomchai S; Limohpasmanee W; Chansang C; Chansang U; Mongkalangoon P PLoS Negl Trop Dis; 2019 Oct; 13(10):e0007771. PubMed ID: 31658265 [TBL] [Abstract][Full Text] [Related]
18. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases. Zumaya-Estrada FA; Rodríguez MC; Rodríguez MH Salud Publica Mex; 2018; 60(1):77-85. PubMed ID: 29689660 [TBL] [Abstract][Full Text] [Related]
19. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Pleydell DRJ; Bouyer J Commun Biol; 2019; 2():201. PubMed ID: 31149645 [TBL] [Abstract][Full Text] [Related]
20. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]