These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21998747)

  • 1. Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria.
    Riedel TJ; Johnson LC; Knight J; Hantgan RR; Holmes RP; Lowther WT
    PLoS One; 2011; 6(10):e26021. PubMed ID: 21998747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition.
    Riedel TJ; Knight J; Murray MS; Milliner DS; Holmes RP; Lowther WT
    Biochim Biophys Acta; 2012 Oct; 1822(10):1544-52. PubMed ID: 22771891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of human 4-hydroxy-2-oxoglutarate aldolase by pyruvate and α-ketoglutarate: implications for primary hyperoxaluria type-3.
    Huang A; Burke J; Bunker RD; Mok YF; Griffin MD; Baker EN; Loomes KM
    Biochem J; 2019 Nov; 476(21):3369-3383. PubMed ID: 31696211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a novel microtitration protocol to obtain diffraction-quality crystals of 4-hydroxy-2-oxoglutarate aldolase from Bos taurus.
    Huang A; Baker E; Loomes K
    Acta Crystallogr F Struct Biol Commun; 2014 Nov; 70(Pt 11):1546-9. PubMed ID: 25372828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary hyperoxaluria type III--a model for studying perturbations in glyoxylate metabolism.
    Belostotsky R; Pitt JJ; Frishberg Y
    J Mol Med (Berl); 2012 Dec; 90(12):1497-504. PubMed ID: 22729392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases.
    Wang W; Mazurkewich S; Kimber MS; Seah SY
    J Biol Chem; 2010 Nov; 285(47):36608-15. PubMed ID: 20843800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in DHDPSL are responsible for primary hyperoxaluria type III.
    Belostotsky R; Seboun E; Idelson GH; Milliner DS; Becker-Cohen R; Rinat C; Monico CG; Feinstein S; Ben-Shalom E; Magen D; Weissman I; Charon C; Frishberg Y
    Am J Hum Genet; 2010 Sep; 87(3):392-9. PubMed ID: 20797690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular degradation of 4-hydroxy-2-oxoglutarate aldolase leads to absolute deficiency in primary hyperoxaluria type 3.
    MacDonald JR; Huang AD; Loomes KM
    FEBS Lett; 2016 May; 590(10):1467-76. PubMed ID: 27096395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of l-2-keto-3-deoxyfuconate aldolases in a nonphosphorylating l-fucose metabolism pathway in anaerobic bacteria.
    Watanabe S
    J Biol Chem; 2020 Jan; 295(5):1338-1349. PubMed ID: 31914410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida.
    Huynh N; Aye A; Li Y; Yu H; Cao H; Tiwari VK; Shin DW; Chen X; Fisher AJ
    Biochemistry; 2013 Nov; 52(47):8570-9. PubMed ID: 24152047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid sequence of the pyruvate and the glyoxylate active-site lysine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase.
    Vlahos CJ; Dekker EE
    J Biol Chem; 1986 Aug; 261(24):11049-55. PubMed ID: 3090043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa.
    Zaitseva J; Lu J; Olechoski KL; Lamb AL
    J Biol Chem; 2006 Nov; 281(44):33441-9. PubMed ID: 16914555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria.
    Buchalski B; Wood KD; Challa A; Fargue S; Holmes RP; Lowther WT; Knight J
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165633. PubMed ID: 31821850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the Class I KDPG aldolase.
    Fullerton SW; Griffiths JS; Merkel AB; Cheriyan M; Wymer NJ; Hutchins MJ; Fierke CA; Toone EJ; Naismith JH
    Bioorg Med Chem; 2006 May; 14(9):3002-10. PubMed ID: 16403639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal function can be impaired in children with primary hyperoxaluria type 3.
    Allard L; Cochat P; Leclerc AL; Cachat F; Fichtner C; De Souza VC; Garcia CD; Camoin-Schweitzer MC; Macher MA; Acquaviva-Bourdain C; Bacchetta J
    Pediatr Nephrol; 2015 Oct; 30(10):1807-13. PubMed ID: 25972204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation Hot Spot Region in the HOGA1 Gene Associated with Primary Hyperoxaluria Type 3 in the Chinese Population.
    Wang W; Liu Y; Kang L; He R; Song J; Li Y; Li J; Yang Y
    Kidney Blood Press Res; 2019; 44(4):743-753. PubMed ID: 31401635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity.
    Coincon M; Wang W; Sygusch J; Seah SY
    J Biol Chem; 2012 Oct; 287(43):36208-21. PubMed ID: 22908224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI.
    Baker P; Carere J; Seah SY
    Biochemistry; 2011 May; 50(17):3559-69. PubMed ID: 21425833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial hydroxyproline metabolism: implications for primary hyperoxaluria.
    Knight J; Holmes RP
    Am J Nephrol; 2005; 25(2):171-5. PubMed ID: 15849464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.
    Forouhar F; Hussain M; Farid R; Benach J; Abashidze M; Edstrom WC; Vorobiev SM; Xiao R; Acton TB; Fu Z; Kim JJ; Miziorko HM; Montelione GT; Hunt JF
    J Biol Chem; 2006 Mar; 281(11):7533-45. PubMed ID: 16330546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.