These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 21998817)
1. Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Meisel S; Stöckel S; Elschner M; Rösch P; Popp J Analyst; 2011 Dec; 136(23):4997-5005. PubMed ID: 21998817 [TBL] [Abstract][Full Text] [Related]
2. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Nicolaou N; Xu Y; Goodacre R Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098 [TBL] [Abstract][Full Text] [Related]
3. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. Wang J; Xie X; Feng J; Chen JC; Du XJ; Luo J; Lu X; Wang S Int J Food Microbiol; 2015 Jul; 204():66-74. PubMed ID: 25863337 [TBL] [Abstract][Full Text] [Related]
4. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Kloß S; Lorenz B; Dees S; Labugger I; Rösch P; Popp J Anal Bioanal Chem; 2015 Nov; 407(27):8333-41. PubMed ID: 26041453 [TBL] [Abstract][Full Text] [Related]
5. Direct determination of unsaturation level of milk fat using Raman spectroscopy. El-Abassy RM; Eeravuchira PJ; Donfack P; von der Kammer B; Materny A Appl Spectrosc; 2012 May; 66(5):538-44. PubMed ID: 22524959 [TBL] [Abstract][Full Text] [Related]
6. Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Stöckel S; Meisel S; Elschner M; Rösch P; Popp J Anal Chem; 2012 Nov; 84(22):9873-80. PubMed ID: 23098322 [TBL] [Abstract][Full Text] [Related]
7. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Goeller LJ; Riley MR Appl Spectrosc; 2007 Jul; 61(7):679-85. PubMed ID: 17697460 [TBL] [Abstract][Full Text] [Related]
8. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Jarvis RM; Goodacre R Anal Chem; 2004 Jan; 76(1):40-7. PubMed ID: 14697030 [TBL] [Abstract][Full Text] [Related]
9. Identification of water pathogens by Raman microspectroscopy. Kusić D; Kampe B; Rösch P; Popp J Water Res; 2014 Jan; 48():179-89. PubMed ID: 24103393 [TBL] [Abstract][Full Text] [Related]
10. Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. Chiang YC; Tsen HY; Chen HY; Chang YH; Lin CK; Chen CY; Pai WY J Microbiol Methods; 2012 Jan; 88(1):110-6. PubMed ID: 22101309 [TBL] [Abstract][Full Text] [Related]
11. Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Marchand S; Heylen K; Messens W; Coudijzer K; De Vos P; Dewettinck K; Herman L; De Block J; Heyndrickx M Environ Microbiol; 2009 Feb; 11(2):467-82. PubMed ID: 19196277 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Münchberg U; Rösch P; Bauer M; Popp J Anal Bioanal Chem; 2014 May; 406(13):3041-50. PubMed ID: 24652157 [TBL] [Abstract][Full Text] [Related]
13. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. Jarvis RM; Goodacre R FEMS Microbiol Lett; 2004 Mar; 232(2):127-32. PubMed ID: 15033230 [TBL] [Abstract][Full Text] [Related]
14. Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Yamaguchi N; Ohba H; Nasu M Lett Appl Microbiol; 2006 Dec; 43(6):631-6. PubMed ID: 17083709 [TBL] [Abstract][Full Text] [Related]
15. Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Wichmann C; Rösch P; Popp J Anal Bioanal Chem; 2021 Aug; 413(20):5193-5200. PubMed ID: 34215913 [TBL] [Abstract][Full Text] [Related]
17. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. Harz M; Rösch P; Popp J Cytometry A; 2009 Feb; 75(2):104-13. PubMed ID: 19156822 [TBL] [Abstract][Full Text] [Related]
18. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Walter A; März A; Schumacher W; Rösch P; Popp J Lab Chip; 2011 Mar; 11(6):1013-21. PubMed ID: 21283864 [TBL] [Abstract][Full Text] [Related]
19. Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk. Ercolini D; Russo F; Ferrocino I; Villani F Food Microbiol; 2009 Apr; 26(2):228-31. PubMed ID: 19171267 [TBL] [Abstract][Full Text] [Related]
20. Assessment of an extraction protocol to detect the major mastitis-causing pathogens in bovine milk. Cressier B; Bissonnette N J Dairy Sci; 2011 May; 94(5):2171-84. PubMed ID: 21524507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]