These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 21998819)
1. Three dye energy transfer cascade within DNA thin films. Navarathne D; Ner Y; Grote JG; Sotzing GA Chem Commun (Camb); 2011 Nov; 47(44):12125-7. PubMed ID: 21998819 [TBL] [Abstract][Full Text] [Related]
2. Role of surfactants in the interaction of dye molecules in natural DNA polymers. You H; Spaeth H; Linhard VN; Steckl AJ Langmuir; 2009 Oct; 25(19):11698-702. PubMed ID: 19678684 [TBL] [Abstract][Full Text] [Related]
3. Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers. Long W; Zou W; Li X; Jiang W; Li X; Chen J Opt Express; 2014 Mar; 22(6):6249-56. PubMed ID: 24663973 [TBL] [Abstract][Full Text] [Related]
4. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Li J; Mei F; Li WY; He XW; Zhang YK Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):811-7. PubMed ID: 18023245 [TBL] [Abstract][Full Text] [Related]
5. An investigation on interaction between 14mer DNA oligonucleotide and CTAB by fluorescence and fluorescence resonance energy transfer studies. Santhiya D; Maiti S J Phys Chem B; 2010 Jun; 114(22):7602-8. PubMed ID: 20469940 [TBL] [Abstract][Full Text] [Related]
6. Lasing in DNA-CTMA doped with Rhodamine 610 in butanol. Rujoiu TB; Petris A; Vlad VI; Rau I; Manea AM; Kajzar F Phys Chem Chem Phys; 2015 May; 17(19):13104-11. PubMed ID: 25917760 [TBL] [Abstract][Full Text] [Related]
7. CTAB enhancement of FRET in DNA structures. Oh T; Takahashi T; Kim S; Heller MJ J Biophotonics; 2016 Jan; 9(1-2):49-54. PubMed ID: 26530400 [TBL] [Abstract][Full Text] [Related]
8. Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine. Yu Z; Li W; Hagen JA; Zhou Y; Klotzkin D; Grote JG; Steckl AJ Appl Opt; 2007 Mar; 46(9):1507-13. PubMed ID: 17334443 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch. Li H; Luo Y; Sun X Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356 [TBL] [Abstract][Full Text] [Related]
11. Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. Wang S; Gaylord BS; Bazan GC J Am Chem Soc; 2004 May; 126(17):5446-51. PubMed ID: 15113216 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
13. Dual-color nanoscale assemblies of structurally stable, few-atom silver clusters, as reported by fluorescence resonance energy transfer. Schultz D; Copp SM; Markešević N; Gardner K; Oemrawsingh SS; Bouwmeester D; Gwinn E ACS Nano; 2013 Nov; 7(11):9798-807. PubMed ID: 24090435 [TBL] [Abstract][Full Text] [Related]
14. Computer simulation to investigate the FRET application in DNA hybridization systems. Liao JM; Wang YT; Chen CL Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495 [TBL] [Abstract][Full Text] [Related]
15. Probing the dynamic nature of DNA multilayer films using Förster resonance energy transfer. Lee L; Johnston AP; Caruso F Langmuir; 2012 Aug; 28(34):12527-35. PubMed ID: 22889012 [TBL] [Abstract][Full Text] [Related]
16. Quantum dots acting as energy acceptors with organic dyes as donors in solution. Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922 [TBL] [Abstract][Full Text] [Related]
17. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. Yin W; Wang W; Zhou L; Sun S; Zhang L J Hazard Mater; 2010 Jan; 173(1-3):194-9. PubMed ID: 19733435 [TBL] [Abstract][Full Text] [Related]
18. Förster's resonance energy transfer between Fullerene C60 and Coumarin C440. Qaiser D; Khan MS; Singh RD; Khan ZH; Chawla S Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1065-8. PubMed ID: 20869302 [TBL] [Abstract][Full Text] [Related]
19. Multistep fluorescence resonance energy transfer in sequential chromophore array constructed on oligo-DNA assemblies. Ohya Y; Yabuki K; Hashimoto M; Nakajima A; Ouchi T Bioconjug Chem; 2003; 14(6):1057-66. PubMed ID: 14624618 [TBL] [Abstract][Full Text] [Related]
20. Orientational averaging of dye molecules attached to proteins in Förster resonance energy transfer measurements: insights from a simulation study. Allen LR; Paci E J Chem Phys; 2009 Aug; 131(6):065101. PubMed ID: 19691411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]