These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
550 related articles for article (PubMed ID: 21999213)
21. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453 [TBL] [Abstract][Full Text] [Related]
22. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
23. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996 [TBL] [Abstract][Full Text] [Related]
24. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509 [TBL] [Abstract][Full Text] [Related]
25. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
26. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. Pişkin E; Işoğlu IA; Bölgen N; Vargel I; Griffiths S; Cavuşoğlu T; Korkusuz P; Güzel E; Cartmell S J Biomed Mater Res A; 2009 Sep; 90(4):1137-51. PubMed ID: 18671271 [TBL] [Abstract][Full Text] [Related]
27. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Bi L; Rahaman MN; Day DE; Brown Z; Samujh C; Liu X; Mohammadkhah A; Dusevich V; Eick JD; Bonewald LF Acta Biomater; 2013 Aug; 9(8):8015-26. PubMed ID: 23643606 [TBL] [Abstract][Full Text] [Related]
28. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
29. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
30. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E Acta Biomater; 2009 Jan; 5(1):305-15. PubMed ID: 18778977 [TBL] [Abstract][Full Text] [Related]
31. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
32. Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study. Jaiswal AK; Dhumal RV; Ghosh S; Chaudhari P; Nemani H; Soni VP; Vanage GR; Bellare JR J Biomed Nanotechnol; 2013 Dec; 9(12):2073-85. PubMed ID: 24266262 [TBL] [Abstract][Full Text] [Related]
33. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475 [TBL] [Abstract][Full Text] [Related]
34. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
35. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related]
36. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Francis L; Venugopal J; Prabhakaran MP; Thavasi V; Marsano E; Ramakrishna S Acta Biomater; 2010 Oct; 6(10):4100-9. PubMed ID: 20466085 [TBL] [Abstract][Full Text] [Related]
37. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites. Liao L; Yang S; Miron RJ; Wei J; Zhang Y; Zhang M PLoS One; 2014; 9(9):e105876. PubMed ID: 25184285 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Koh HS; Yong T; Chan CK; Ramakrishna S Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251 [TBL] [Abstract][Full Text] [Related]
39. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Sanaei-Rad P; Jafarzadeh Kashi TS; Seyedjafari E; Soleimani M Biologicals; 2016 Nov; 44(6):511-516. PubMed ID: 27720267 [TBL] [Abstract][Full Text] [Related]
40. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]