These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 21999645)
1. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics. Bhagan S; Wayland BB Inorg Chem; 2011 Nov; 50(21):11011-20. PubMed ID: 21999645 [TBL] [Abstract][Full Text] [Related]
2. Reactivity and equilibrium thermodynamic studies of rhodium tetrakis(3,5-disulfonatomesityl)porphyrin species with H2, CO, and olefins in water. Fu X; Li S; Wayland BB Inorg Chem; 2006 Nov; 45(24):9884-9. PubMed ID: 17112286 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium thermodynamic studies in water: reactions of dihydrogen with rhodium(III) porphyrins relevant to Rh-Rh, Rh-H, and Rh-OH bond energetics. Fu X; Wayland BB J Am Chem Soc; 2004 Mar; 126(8):2623-31. PubMed ID: 14982472 [TBL] [Abstract][Full Text] [Related]
4. Comparative studies of preferential binding of group nine metalloporphyrins (M = Co, Rh, Ir) with methoxide/methanol in competition with hydroxide/water in aqueous solution. Bhagan S; Sarkar S; Wayland BB Inorg Chem; 2010 Jul; 49(14):6734-9. PubMed ID: 20545326 [TBL] [Abstract][Full Text] [Related]
5. Iridium porphyrins in CD3OD: reduction of Ir(III), CD3-OD bond cleavage, Ir-D acid dissociation and alkene reactions. Bhagan S; Imler GH; Wayland BB Inorg Chem; 2013 Apr; 52(8):4611-7. PubMed ID: 23540797 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics of rhodium hydride reactions with CO, aldehydes, and olefins in water: organo-rhodium porphyrin bond dissociation free energies. Fu X; Wayland BB J Am Chem Soc; 2005 Nov; 127(47):16460-7. PubMed ID: 16305232 [TBL] [Abstract][Full Text] [Related]
7. Methanol as a reaction medium and reagent in substrate reactions of rhodium porphyrins. Li S; Sarkar S; Wayland BB Inorg Chem; 2009 Sep; 48(17):8550-8. PubMed ID: 19642648 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Rh-OCH3 and Rh-CH2OH bond dissociation energetics from methanol C-H and O-H bond reactions with rhodium(II) porphyrins. Sarkar S; Li S; Wayland BB J Am Chem Soc; 2010 Oct; 132(39):13569-71. PubMed ID: 20831223 [TBL] [Abstract][Full Text] [Related]
9. Regioselectivity and equilibrium thermodynamics for addition of Rh-OH to olefins in water. Fu X; Li S; Wayland BB J Am Chem Soc; 2006 Jul; 128(27):8947-54. PubMed ID: 16819891 [TBL] [Abstract][Full Text] [Related]
10. C-C coupling reactions in the coordination sphere of rhodium(I) and rhodium(III): New routes for the di- and trimerization of terminal alkynes. Schafer M; Wolf J; Werner H Dalton Trans; 2005 Apr; (8):1468-81. PubMed ID: 15824785 [TBL] [Abstract][Full Text] [Related]
11. Allylic C-H bond activation and functionalization mediated by tris(oxazolinyl)borato rhodium(I) and iridium(I) compounds. Ho HA; Gray TS; Baird B; Ellern A; Sadow AD Dalton Trans; 2011 Jun; 40(24):6500-14. PubMed ID: 21566811 [TBL] [Abstract][Full Text] [Related]
12. The synthesis, characterisation and reactivity of 2-phosphanylethylcyclopentadienyl complexes of cobalt, rhodium and iridium. McConnell AC; Pogorzelec PJ; Slawin AM; Williams GL; Elliott PI; Haynes A; Marr AC; Cole-Hamilton DJ Dalton Trans; 2006 Jan; (1):91-107. PubMed ID: 16357965 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic studies on the reactions of cyanide with a water-soluble Fe(III) porphyrin and their effect on the binding of NO. Oszajca M; Franke A; Brindell M; Stochel G; van Eldik R Inorg Chem; 2011 Apr; 50(8):3413-24. PubMed ID: 21428315 [TBL] [Abstract][Full Text] [Related]
14. New diphosphine ligands containing ethyleneglycol and amino alcohol spacers for the rhodium-catalyzed carbonylation of methanol. Thomas CM; Mafua R; Therrien B; Rusanov E; Stoeckli-Evans H; Süss-Fink G Chemistry; 2002 Aug; 8(15):3343-52. PubMed ID: 12203315 [TBL] [Abstract][Full Text] [Related]
15. Monomeric MnIII/II and FeIII/II complexes with terminal hydroxo and oxo ligands: probing reactivity via O-H bond dissociation energies. Gupta R; Borovik AS J Am Chem Soc; 2003 Oct; 125(43):13234-42. PubMed ID: 14570499 [TBL] [Abstract][Full Text] [Related]
16. Design of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) complexes. Leung SK; Kwok KY; Zhang KY; Lo KK Inorg Chem; 2010 Jun; 49(11):4984-95. PubMed ID: 20465281 [TBL] [Abstract][Full Text] [Related]
17. High-resolution EPR spectroscopic investigations of a homologous set of d9-cobalt(0), d9-rhodium(0), and d9-iridium(0) complexes. Deblon S; Liesum L; Harmer J; Schönberg H; Schweiger A; Grützmacher H Chemistry; 2002 Feb; 8(3):601-11. PubMed ID: 11855708 [TBL] [Abstract][Full Text] [Related]
18. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1). Petit A; Richard P; Cacelli I; Poli R Chemistry; 2006 Jan; 12(3):813-23. PubMed ID: 16331716 [TBL] [Abstract][Full Text] [Related]
19. New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation. Hesp KD; McDonald R; Ferguson MJ; Stradiotto M J Am Chem Soc; 2008 Dec; 130(48):16394-406. PubMed ID: 18986145 [TBL] [Abstract][Full Text] [Related]
20. First investigation of non-classical dihydrogen bonding between an early transition-metal hydride and alcohols: IR, NMR, and DFT approach. Bakhmutova EV; Bakhmutov VI; Belkova NV; Besora M; Epstein LM; Lledós A; Nikonov GI; Shubina ES; Tomàs J; Vorontsov EV Chemistry; 2004 Feb; 10(3):661-71. PubMed ID: 14767930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]