These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 21999900)
1. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications. Dargaville BL; Vaquette C; Peng H; Rasoul F; Chau YQ; Cooper-White JJ; Campbell JH; Whittaker AK Biomacromolecules; 2011 Nov; 12(11):3856-69. PubMed ID: 21999900 [TBL] [Abstract][Full Text] [Related]
2. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575 [TBL] [Abstract][Full Text] [Related]
3. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
4. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate. Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
7. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060 [TBL] [Abstract][Full Text] [Related]
8. Degradable porous scaffolds from various L-lactide and trimethylene carbonate copolymers obtained by a simple and effective method. Tyson T; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2009 Jan; 10(1):149-54. PubMed ID: 19063595 [TBL] [Abstract][Full Text] [Related]
9. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005 [TBL] [Abstract][Full Text] [Related]
10. Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate). Mizutani M; Matsuda T J Biomed Mater Res; 2002 Jul; 61(1):53-60. PubMed ID: 12001246 [TBL] [Abstract][Full Text] [Related]
11. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
12. Preliminary investigation of seeding mesenchymal stem cells on biodegradable scaffolds for vascular tissue engineering in vitro. Li CM; Wang ZG; Gu YQ; Dong JD; Qiu RX; Bian C; Liu XF; Feng ZG ASAIO J; 2009; 55(6):614-9. PubMed ID: 19812476 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. He C; Xu X; Zhang F; Cao L; Feng W; Wang H; Mo X J Biomed Mater Res A; 2011 Jun; 97(3):339-47. PubMed ID: 21465642 [TBL] [Abstract][Full Text] [Related]
14. Poly(trimethylene carbonate-co-L-lactide) electrospun scaffolds for use as vascular grafts. Braghirolli DI; Caberlon B; Gamba D; Petry J; Dias ML; Pranke P Braz J Med Biol Res; 2019; 52(8):e8318. PubMed ID: 31411247 [TBL] [Abstract][Full Text] [Related]
15. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Plikk P; Målberg S; Albertsson AC Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401 [TBL] [Abstract][Full Text] [Related]
16. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide). Guo Q; Lu Z; Zhang Y; Li S; Yang J Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility of different poly(lactide-coglycolide) polymers implanted into the subconjunctival space in rats. Rönkkö S; Kaarniranta K; Kalesnykas G; Uusitalo H Ophthalmic Res; 2011; 46(2):55-65. PubMed ID: 21228610 [TBL] [Abstract][Full Text] [Related]
18. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. Park IS; Kim SH; Kim YH; Kim IH; Kim SH J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403 [TBL] [Abstract][Full Text] [Related]
19. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
20. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels. Tzoneva R; Weckwerth C; Seifert B; Behl M; Heuchel M; Tsoneva I; Lendlein A J Biomater Sci Polym Ed; 2011; 22(16):2205-26. PubMed ID: 21073803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]