These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21999900)

  • 41. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications.
    Shen X; Su F; Dong J; Fan Z; Duan Y; Li S
    J Biomater Sci Polym Ed; 2015; 26(8):497-514. PubMed ID: 25783945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradable poly(polyol sebacate) polymers.
    Bruggeman JP; de Bruin BJ; Bettinger CJ; Langer R
    Biomaterials; 2008 Dec; 29(36):4726-35. PubMed ID: 18824260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradable elastomeric scaffolds for soft tissue engineering.
    Pêgo AP; Poot AA; Grijpma DW; Feijen J
    J Control Release; 2003 Feb; 87(1-3):69-79. PubMed ID: 12618024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
    Sharifi S; van Kooten TG; Kranenburg HJ; Meij BP; Behl M; Lendlein A; Grijpma DW
    Biomaterials; 2013 Nov; 34(33):8105-13. PubMed ID: 23932501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osmotically driven protein release from photo-cross-linked elastomers of poly(trimethylene carbonate) and poly(trimethylene carbonate-co-d,l-lactide).
    Chapanian R; Amsden BG
    Eur J Pharm Biopharm; 2010 Feb; 74(2):172-83. PubMed ID: 19948219
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides.
    Zhang Z; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Apr; 15(4):381-5. PubMed ID: 15332603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of functionalized biodegradable poly(DL-lactide-co-RS-beta-malic acid).
    He B; Poon YF; Feng J; Chan-Park MB
    J Biomed Mater Res A; 2008 Oct; 87(1):254-63. PubMed ID: 18181093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser processing of polymer constructs from poly(3-hydroxybutyrate).
    Volova TG; Tarasevich AA; Golubev AI; Boyandin AN; Shumilova AA; Nikolaeva ED; Shishatskaya EI
    J Biomater Sci Polym Ed; 2015; 26(16):1210-28. PubMed ID: 26278920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elastomeric electrospun scaffolds of poly(L-lactide-co-trimethylene carbonate) for myocardial tissue engineering.
    Mukherjee S; Gualandi C; Focarete ML; Ravichandran R; Venugopal JR; Raghunath M; Ramakrishna S
    J Mater Sci Mater Med; 2011 Jul; 22(7):1689-99. PubMed ID: 21617996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate.
    Ribeiro S; Carvalho AM; Fernandes EM; Gomes ME; Reis RL; Bayon Y; Zeugolis DI
    Acta Biomater; 2021 Feb; 121():303-315. PubMed ID: 33227488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel adhesion prevention membrane based on a bioresorbable copoly(ester-ether) comprised of poly-L-lactide and Pluronic: in vitro and in vivo evaluations.
    Yamaoka T; Takahashi Y; Fujisato T; Lee CW; Tsuji T; Ohta T; Murakami A; Kimura Y
    J Biomed Mater Res; 2001 Mar; 54(4):470-9. PubMed ID: 11426591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of novel biodegradable polymer scaffolds for vascular tissue engineering.
    Gui L; Zhao L; Spencer RW; Burghouwt A; Taylor MS; Shalaby SW; Niklason LE
    Tissue Eng Part A; 2011 May; 17(9-10):1191-200. PubMed ID: 21143045
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels.
    Aminlashgari N; Höglund OV; Borg N; Hakkarainen M
    Acta Biomater; 2013 Jun; 9(6):6898-904. PubMed ID: 23438863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo degradation and tissue response to poly(5-ethylene ketal ε-caprolactone-co-D,L-lactide).
    Babasola IO; Bianco J; Amsden BG
    Biomacromolecules; 2012 Jul; 13(7):2211-7. PubMed ID: 22712428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical evaluation of resorbable copolymers for end use as vascular grafts.
    Hanson SJ; Jamshidi K; Eberhart RC
    ASAIO Trans; 1988; 34(3):789-93. PubMed ID: 3196600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An innovative occluder for cardiac defect: 3D printing and a biocompatibility research based on self-developed bioabsorbable material-LA-GA-TMC.
    Sun Y; Xia Y; Zhang X; Li W; Xing Q
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2108-2118. PubMed ID: 31961054
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amino alcohol-based degradable poly(ester amide) elastomers.
    Bettinger CJ; Bruggeman JP; Borenstein JT; Langer RS
    Biomaterials; 2008 May; 29(15):2315-25. PubMed ID: 18295329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of a designed poly(trimethylene carbonate) microvascular network by stereolithography.
    Schüller-Ravoo S; Zant E; Feijen J; Grijpma DW
    Adv Healthc Mater; 2014 Dec; 3(12):2004-11. PubMed ID: 25319598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers.
    Hou Q; Grijpma DW; Feijen J
    Acta Biomater; 2009 Jun; 5(5):1543-51. PubMed ID: 19179128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.