These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22000050)

  • 1. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L.
    Mimmo T; Hann S; Jaitz L; Cesco S; Gessa CE; Puschenreiter M
    Plant Physiol Biochem; 2011 Nov; 49(11):1272-8. PubMed ID: 22000050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources.
    Pearse SJ; Veneklaas EJ; Cawthray G; Bolland MD; Lambers H
    New Phytol; 2007; 173(1):181-90. PubMed ID: 17176404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of root exudation of white lupine (Lupinus albus L.) on uranium phytoavailability in a naturally uranium-rich soil.
    Henner P; Brédoire F; Tailliez A; Coppin F; Pierrisnard S; Camilleri V; Keller C
    J Environ Radioact; 2018 Oct; 190-191():39-50. PubMed ID: 29751206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial consortium inoculant increases pasture grasses yield in low-phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation.
    Tshewang S; Rengel Z; Siddique KH; Solaiman ZM
    J Sci Food Agric; 2022 Jan; 102(2):540-549. PubMed ID: 34146349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius.
    Monei N; Hitch M; Heim J; Pourret O; Heilmeier H; Wiche O
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57172-57189. PubMed ID: 35349058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate.
    Wang X; Pearse SJ; Lambers H
    Ann Bot; 2013 Nov; 112(7):1449-59. PubMed ID: 24061491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere.
    Pearse SJ; Veneklaas EJ; Cawthray G; Bolland MD; Lambers H
    New Phytol; 2006; 169(3):515-24. PubMed ID: 16411954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots.
    Dessureault-Rompré J; Nowack B; Schulin R; Tercier-Waeber ML; Luster J
    Environ Sci Technol; 2008 Oct; 42(19):7146-51. PubMed ID: 18939539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of root morphology, respiration and carboxylate exudation on carbon economy in two non-mycorrhizal lupines under phosphorus deficiency.
    Funayama-Noguchi S; Shibata M; Noguchi K; Terashima I
    Plant Cell Environ; 2021 Feb; 44(2):598-612. PubMed ID: 33099780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.
    Wang X; Tang C; Severi J; Butterly CR; Baldock JA
    New Phytol; 2016 Aug; 211(3):864-73. PubMed ID: 27101777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency.
    Gao X; Zhang F; Hoffland E
    J Environ Qual; 2009; 38(6):2315-21. PubMed ID: 19875787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum.
    Wang BL; Shen JB; Zhang WH; Zhang FS; Neumann G
    New Phytol; 2007; 176(3):581-589. PubMed ID: 17725555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions?
    Zhu Y; Yan F; Zörb C; Schubert S
    Plant Cell Physiol; 2005 Jun; 46(6):892-901. PubMed ID: 15821025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root exudates: from plant to rhizosphere and beyond.
    Vives-Peris V; de Ollas C; Gómez-Cadenas A; Pérez-Clemente RM
    Plant Cell Rep; 2020 Jan; 39(1):3-17. PubMed ID: 31346716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.
    Pastor J; Hernández AJ; Prieto N; Fernández-Pascual M
    J Plant Physiol; 2003 Dec; 160(12):1457-65. PubMed ID: 14717438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress.
    Javed MT; Akram MS; Habib N; Tanwir K; Ali Q; Niazi NK; Gul H; Iqbal N
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2958-2971. PubMed ID: 29147985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage.
    Weisskopf L; Tomasi N; Santelia D; Martinoia E; Langlade NB; Tabacchi R; Abou-Mansour E
    New Phytol; 2006; 171(3):657-68. PubMed ID: 16866966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.).
    Cheng L; Tang X; Vance CP; White PJ; Zhang F; Shen J
    J Exp Bot; 2014 Jul; 65(12):2995-3003. PubMed ID: 24723402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway.
    Auger B; Pouvreau JB; Pouponneau K; Yoneyama K; Montiel G; Le Bizec B; Yoneyama K; Delavault P; Delourme R; Simier P
    Mol Plant Microbe Interact; 2012 Jul; 25(7):993-1004. PubMed ID: 22414435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.