These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Anti-diuretic factors in insects: the role of CAPA peptides. Paluzzi JP Gen Comp Endocrinol; 2012 May; 176(3):300-8. PubMed ID: 22226757 [TBL] [Abstract][Full Text] [Related]
4. Hormonal control of renal functions in insects. Phillips JE Fed Proc; 1982 Jun; 41(8):2348-54. PubMed ID: 6282650 [TBL] [Abstract][Full Text] [Related]
5. Neuroendocrine control of ionic homeostasis in blood-sucking insects. Coast GM J Exp Biol; 2009 Feb; 212(Pt 3):378-86. PubMed ID: 19151213 [TBL] [Abstract][Full Text] [Related]
6. Local osmotic gradients in the rectal pads of an insect. Wall BJ Fed Proc; 1971; 30(1):42-8. PubMed ID: 5539872 [No Abstract] [Full Text] [Related]
7. Diuretic and antidiuretic factors which act on the malpighian tubules of the house cricket, Acheta domesticus. Spring JH; Clark TM Prog Clin Biol Res; 1990; 342():559-64. PubMed ID: 2166294 [No Abstract] [Full Text] [Related]
9. Excretion in insects: function of gut and rectum in concentrating and diluting the urine. Phillips JE Fed Proc; 1977 Oct; 36(11):2480-6. PubMed ID: 20337 [TBL] [Abstract][Full Text] [Related]
10. Locust diuretic hormone-stimulated synthesis and excretion of cyclic-AMP: a novel Malpighian tubule bioassay. Rafaeli A; Pines M; Stern PS; Applebaum SW Gen Comp Endocrinol; 1984 Apr; 54(1):35-42. PubMed ID: 6327460 [TBL] [Abstract][Full Text] [Related]
11. Allatotropin-like peptide in Malpighian tubules: insect renal tubules as an autonomous endocrine organ. Santini MS; Ronderos JR Gen Comp Endocrinol; 2009 Feb; 160(3):243-9. PubMed ID: 19118556 [TBL] [Abstract][Full Text] [Related]
12. Insect homeostasis: past and future. Maddrell S J Exp Biol; 2009 Feb; 212(Pt 3):446-51. PubMed ID: 19151220 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of action of the antidiuretic peptide Tenmo ADFa in Malpighian tubules of Aedes aegypti. Massaro RC; Lee LW; Patel AB; Wu DS; Yu MJ; Scott BN; Schooley DA; Schegg KM; Beyenbach KW J Exp Biol; 2004 Jul; 207(Pt 16):2877-88. PubMed ID: 15235016 [TBL] [Abstract][Full Text] [Related]
14. The control of diuresis in the tsetse fly Glossina austeni: a preliminary investigation of the diuretic hormone. Gee JD J Exp Biol; 1975 Oct; 63(2):391-401. PubMed ID: 1202131 [TBL] [Abstract][Full Text] [Related]
15. The hormonal control of diuresis in the cabbage white butterfly Pieris brassicae. Nicolson SW J Exp Biol; 1976 Dec; 65(3):565-75. PubMed ID: 190334 [TBL] [Abstract][Full Text] [Related]
16. Active transport of water by insect Malpighian tubules. Maddrell S J Exp Biol; 2004 Feb; 207(Pt 6):894-6. PubMed ID: 14766947 [No Abstract] [Full Text] [Related]
17. Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle. Aikins MJ; Schooley DA; Begum K; Detheux M; Beeman RW; Park Y Insect Biochem Mol Biol; 2008 Jul; 38(7):740-8. PubMed ID: 18549960 [TBL] [Abstract][Full Text] [Related]
18. Observations on the osmotic pressure measurement in cryptonephric insects. Saini RS Biochem Exp Biol; 1978; 14(4):383-4. PubMed ID: 757520 [TBL] [Abstract][Full Text] [Related]
19. Neuroendocrinological and molecular aspects of insect reproduction. Simonet G; Poels J; Claeys I; Van Loy T; Franssens V; De Loof A; Broeck JV J Neuroendocrinol; 2004 Aug; 16(8):649-59. PubMed ID: 15271057 [TBL] [Abstract][Full Text] [Related]
20. From finch to fish to man: role of aquaporins in body fluid and brain water regulation. Schrier RW; Chen YC; Cadnapaphornchai MA Neuroscience; 2004; 129(4):897-904. PubMed ID: 15561406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]