These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22000603)

  • 1. Spatial control of cAMP signalling in health and disease.
    Zaccolo M
    Curr Opin Pharmacol; 2011 Dec; 11(6):649-55. PubMed ID: 22000603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of murine cardiac function by phosphodiesterases type 3 and 4.
    Beca S; Aschars-Sobbi R; Panama BK; Backx PH
    Curr Opin Pharmacol; 2011 Dec; 11(6):714-9. PubMed ID: 22047792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentation of cAMP signalling in cardiomyocytes in health and disease.
    Perera RK; Nikolaev VO
    Acta Physiol (Oxf); 2013 Apr; 207(4):650-62. PubMed ID: 23383621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Epac1 Protein: Pharmacological Modulators, Cardiac Signalosome and Pathophysiology.
    Bouvet M; Blondeau JP; Lezoualc'h F
    Cells; 2019 Nov; 8(12):. PubMed ID: 31795450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain.
    Bastug-Özel Z; Wright PT; Kraft AE; Pavlovic D; Howie J; Froese A; Fuller W; Gorelik J; Shattock MJ; Nikolaev VO
    Cardiovasc Res; 2019 Mar; 115(3):546-555. PubMed ID: 30165515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Compartment, Early Disruption of cGMP and cAMP Signalling in Cardiac Myocytes from the
    Brescia M; Chao YC; Koschinski A; Tomek J; Zaccolo M
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells.
    Roberts CD; Dvoryanchikov G; Roper SD; Chaudhari N
    J Physiol; 2009 Apr; 587(Pt 8):1657-68. PubMed ID: 19221121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
    Richards M; Lomas O; Jalink K; Ford KL; Vaughan-Jones RD; Lefkimmiatis K; Swietach P
    Cardiovasc Res; 2016 Jun; 110(3):395-407. PubMed ID: 27089919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies.
    Zaccolo M
    Br J Pharmacol; 2009 Sep; 158(1):50-60. PubMed ID: 19371331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria.
    Wen JF; Cui X; Jin JY; Kim SM; Kim SZ; Kim SH; Lee HS; Cho KW
    Circ Res; 2004 Apr; 94(7):936-43. PubMed ID: 14988225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective.
    Bobin P; Belacel-Ouari M; Bedioune I; Zhang L; Leroy J; Leblais V; Fischmeister R; Vandecasteele G
    Arch Cardiovasc Dis; 2016; 109(6-7):431-43. PubMed ID: 27184830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of cyclic AMP-mediated pathway in neural release of noradrenaline in canine isolated mesenteric artery and vein.
    Mutafova-Yambolieva VN; Smyth L; Bobalova J
    Cardiovasc Res; 2003 Jan; 57(1):217-24. PubMed ID: 12504831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection.
    Kukreja RC; Salloum FN; Das A
    J Am Coll Cardiol; 2012 May; 59(22):1921-7. PubMed ID: 22624832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases.
    Leroy J; Abi-Gerges A; Nikolaev VO; Richter W; Lechêne P; Mazet JL; Conti M; Fischmeister R; Vandecasteele G
    Circ Res; 2008 May; 102(9):1091-100. PubMed ID: 18369156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease.
    Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Maier LS; Hasenfuss G; Nikolaev VO
    Nat Commun; 2015 Apr; 6():6965. PubMed ID: 25917898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease.
    Osadchii OE
    Cardiovasc Drugs Ther; 2007 Jun; 21(3):171-94. PubMed ID: 17373584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.
    Belhassen L; Kelly RA; Smith TW; Balligand JL
    J Clin Invest; 1996 Apr; 97(8):1908-15. PubMed ID: 8621775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDE2 at the crossway between cAMP and cGMP signalling in the heart.
    Weber S; Zeller M; Guan K; Wunder F; Wagner M; El-Armouche A
    Cell Signal; 2017 Oct; 38():76-84. PubMed ID: 28668721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinically relevant concentrations of olprinone reverse attenuating effect of propofol on isoproterenol-induced cyclic adenosine monophosphate accumulation in cardiomyocytes.
    Kurokawa H; Matsunaga A; Tanaka H; Hamada H; Kawamoto M; Yuge O
    Hiroshima J Med Sci; 2008 Mar; 57(1):1-6. PubMed ID: 18578361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.