These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Energy-based graph convolutional networks for scoring protein docking models. Cao Y; Shen Y Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844 [TBL] [Abstract][Full Text] [Related]
4. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Lensink MF; Velankar S; Kryshtafovych A; Huang SY; Schneidman-Duhovny D; Sali A; Segura J; Fernandez-Fuentes N; Viswanath S; Elber R; Grudinin S; Popov P; Neveu E; Lee H; Baek M; Park S; Heo L; Rie Lee G; Seok C; Qin S; Zhou HX; Ritchie DW; Maigret B; Devignes MD; Ghoorah A; Torchala M; Chaleil RA; Bates PA; Ben-Zeev E; Eisenstein M; Negi SS; Weng Z; Vreven T; Pierce BG; Borrman TM; Yu J; Ochsenbein F; Guerois R; Vangone A; Rodrigues JP; van Zundert G; Nellen M; Xue L; Karaca E; Melquiond AS; Visscher K; Kastritis PL; Bonvin AM; Xu X; Qiu L; Yan C; Li J; Ma Z; Cheng J; Zou X; Shen Y; Peterson LX; Kim HR; Roy A; Han X; Esquivel-Rodriguez J; Kihara D; Yu X; Bruce NJ; Fuller JC; Wade RC; Anishchenko I; Kundrotas PJ; Vakser IA; Imai K; Yamada K; Oda T; Nakamura T; Tomii K; Pallara C; Romero-Durana M; Jiménez-García B; Moal IH; Férnandez-Recio J; Joung JY; Kim JY; Joo K; Lee J; Kozakov D; Vajda S; Mottarella S; Hall DR; Beglov D; Mamonov A; Xia B; Bohnuud T; Del Carpio CA; Ichiishi E; Marze N; Kuroda D; Roy Burman SS; Gray JJ; Chermak E; Cavallo L; Oliva R; Tovchigrechko A; Wodak SJ Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):323-48. PubMed ID: 27122118 [TBL] [Abstract][Full Text] [Related]
5. Structural modeling of protein complexes: Current capabilities and challenges. Dapkūnas J; Olechnovič K; Venclovas Č Proteins; 2019 Dec; 87(12):1222-1232. PubMed ID: 31294859 [TBL] [Abstract][Full Text] [Related]
6. Blind predictions of protein interfaces by docking calculations in CAPRI. Lensink MF; Wodak SJ Proteins; 2010 Nov; 78(15):3085-95. PubMed ID: 20839234 [TBL] [Abstract][Full Text] [Related]
7. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Liang S; Li L; Hsu WL; Pilcher MN; Uversky V; Zhou Y; Dunker AK; Meroueh SO Biochemistry; 2009 Jan; 48(2):399-414. PubMed ID: 19113835 [TBL] [Abstract][Full Text] [Related]
8. Incorporating receptor flexibility in the molecular design of protein interfaces. Li L; Liang S; Pilcher MM; Meroueh SO Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976 [TBL] [Abstract][Full Text] [Related]
10. Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45. Nadaradjane AA; Quignot C; Traoré S; Andreani J; Guerois R Proteins; 2020 Aug; 88(8):986-998. PubMed ID: 31746034 [TBL] [Abstract][Full Text] [Related]
11. Using physical potentials and learned models to distinguish native binding interfaces from de novo designed interfaces that do not bind. Demerdash ON; Mitchell JC Proteins; 2013 Nov; 81(11):1919-30. PubMed ID: 23760773 [TBL] [Abstract][Full Text] [Related]
12. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility. Marcu O; Dodson EJ; Alam N; Sperber M; Kozakov D; Lensink MF; Schueler-Furman O Proteins; 2017 Mar; 85(3):445-462. PubMed ID: 28002624 [TBL] [Abstract][Full Text] [Related]
13. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction. Dapkūnas J; Olechnovič K; Venclovas Č Proteins; 2021 Dec; 89(12):1834-1843. PubMed ID: 34176161 [TBL] [Abstract][Full Text] [Related]