BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22001054)

  • 1. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.
    Guo M; Trzcinski AP; Stuckey DC; Murphy RJ
    Bioresour Technol; 2011 Dec; 102(24):11137-46. PubMed ID: 22001054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-of-life of starch-polyvinyl alcohol biopolymers.
    Guo M; Stuckey DC; Murphy RJ
    Bioresour Technol; 2013 Jan; 127():256-66. PubMed ID: 23131650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials.
    Russo MA; O'Sullivan C; Rounsefell B; Halley PJ; Truss R; Clarke WP
    Bioresour Technol; 2009 Mar; 100(5):1705-10. PubMed ID: 18990564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch anaerobic co-digestion of proteins and carbohydrates.
    Elbeshbishy E; Nakhla G
    Bioresour Technol; 2012 Jul; 116():170-8. PubMed ID: 22609672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.
    Nayal FS; Mammadov A; Ciliz N
    J Environ Manage; 2016 Dec; 184(Pt 2):389-399. PubMed ID: 27742149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental assessment of gas management options at the Old Ammässuo landfill (Finland) by means of LCA-modeling (EASEWASTE).
    Manfredi S; Niskanen A; Christensen TH
    Waste Manag; 2009 May; 29(5):1588-94. PubMed ID: 19081238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
    Khoo HH; Lim TZ; Tan RB
    Sci Total Environ; 2010 Feb; 408(6):1367-73. PubMed ID: 19926117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of bagasse waste management options.
    Kiatkittipong W; Wongsuchoto P; Pavasant P
    Waste Manag; 2009 May; 29(5):1628-33. PubMed ID: 19136243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LCA data quality: sensitivity and uncertainty analysis.
    Guo M; Murphy RJ
    Sci Total Environ; 2012 Oct; 435-436():230-43. PubMed ID: 22854094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biological pretreatments in enhancing corn straw biogas production.
    Zhong W; Zhang Z; Luo Y; Sun S; Qiao W; Xiao M
    Bioresour Technol; 2011 Dec; 102(24):11177-82. PubMed ID: 22000969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation.
    Alvarez PJ; Hunt CS
    Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.
    Foley JM; Rozendal RA; Hertle CK; Lant PA; Rabaey K
    Environ Sci Technol; 2010 May; 44(9):3629-37. PubMed ID: 20356090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge.
    Donoso-Bravo A; Pérez-Elvira S; Aymerich E; Fdz-Polanco F
    Bioresour Technol; 2011 Jan; 102(2):660-6. PubMed ID: 20813519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.
    Marañón E; Salter AM; Castrillón L; Heaven S; Fernández-Nava Y
    Waste Manag; 2011 Aug; 31(8):1745-51. PubMed ID: 21504844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment.
    J A; W M J A; M P D; B M; B M
    Environ Sci Technol; 2011 Jun; 45(12):5447-53. PubMed ID: 21591673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor.
    Jeong E; Kim HW; Nam JY; Shin HS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S7-S12. PubMed ID: 19467588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.