These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22001055)

  • 1. Dry reforming of methane with CO2 on an electron-activated iron catalytic bed.
    Labrecque R; Lavoie JM
    Bioresour Technol; 2011 Dec; 102(24):11244-8. PubMed ID: 22001055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliminating non-renewable CO2 emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study.
    Hartley K; Lant P
    Biotechnol Bioeng; 2006 Oct; 95(3):384-98. PubMed ID: 16817239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter.
    Lee S; Lee Y; Lee J; Lee H; Seo Y
    Environ Sci Technol; 2013 Nov; 47(22):13184-90. PubMed ID: 24175633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical looping reforming of waste cooking oil in packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Aug; 101(16):6389-97. PubMed ID: 20359888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.
    Baldwin BA; Stevens J; Howard JJ; Graue A; Kvamme B; Aspenes E; Ersland G; Husebø J; Zornes DR
    Magn Reson Imaging; 2009 Jun; 27(5):720-6. PubMed ID: 19168304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syngas production by bi-reforming methane on an Ni-K-promoted catalyst using hydrotalcites and filamentous carbon as a support material.
    Cunha AF; Morales-Torres S; Pastrana-Martínez LM; Martins AA; Mata TM; Caetano NS; Loureiro JM
    RSC Adv; 2020 Jun; 10(36):21158-21173. PubMed ID: 35518751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of iron oxide addition on hydrogen, carbon dioxide and methane geneses in paddy soil].
    Qu D; Zhang Y; Schnell S; Conrad R
    Ying Yong Sheng Tai Xue Bao; 2003 Aug; 14(8):1313-6. PubMed ID: 14655366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable production of green feed from carbon dioxide and hydrogen.
    Landau MV; Vidruk R; Herskowitz M
    ChemSusChem; 2014 Mar; 7(3):785-94. PubMed ID: 24678062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies.
    Fan MS; Abdullah AZ; Bhatia S
    ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explosion characteristics of synthesised biogas at various temperatures.
    Dupont L; Accorsi A
    J Hazard Mater; 2006 Aug; 136(3):520-5. PubMed ID: 16466853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-processing methane in high temperature steam gasification of biomass.
    Palumbo AW; Jorgensen EL; Sorli JC; Weimer AW
    Bioresour Technol; 2013 Jan; 128():553-9. PubMed ID: 23208181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.