BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22001209)

  • 1. Small heat shock protein AgsA forms dynamic fibrils.
    Shi X; Wang Z; Yan L; Ezemaduka AN; Fan G; Wang R; Fu X; Yin C; Chang Z
    FEBS Lett; 2011 Nov; 585(21):3396-402. PubMed ID: 22001209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Function of Ile-X-Ile Motif in the Oligomerization and Chaperone-Like Activity of Small Heat Shock Protein AgsA at Room Temperature.
    Zhou Q; Shi X; Zhang K; Shi C; Huang L; Chang Z
    Protein J; 2016 Dec; 35(6):401-406. PubMed ID: 27812886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions.
    Sakono M; Utsumi A; Zako T; Abe T; Yohda M; Maeda M
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1259-64. PubMed ID: 23261462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant.
    Ahmad MF; Raman B; Ramakrishna T; Rao ChM
    J Mol Biol; 2008 Jan; 375(4):1040-51. PubMed ID: 18061612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the chaperone function of the small heat shock protein-AgsA.
    Tomoyasu T; Tabata A; Nagamune H
    BMC Biochem; 2010 Jul; 11():27. PubMed ID: 20653971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AgsA oligomer acts as a functional unit.
    Liu D; Chen Q; Zhang L; Hu H; Yin C
    Biochem Biophys Res Commun; 2020 Sep; 530(1):22-28. PubMed ID: 32828289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.
    Hilario E; Martin FJ; Bertolini MC; Fan L
    J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a sHsp of Schizosaccharomyces pombe, SpHsp15.8, and the implication of its functional mechanism by comparison with another sHsp, SpHsp16.0.
    Sugino C; Hirose M; Tohda H; Yoshinari Y; Abe T; Giga-Hama Y; Iizuka R; Shimizu M; Kidokoro S; Ishii N; Yohda M
    Proteins; 2009 Jan; 74(1):6-17. PubMed ID: 18543332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous expression of AgsA enhances Escherichia coli tolerance to the combined effect of elevated temperature and Zinc toxicity.
    Ezemaduka AN; Lv Y; Wang Y; Xu J; Li X
    J Therm Biol; 2018 Feb; 72():137-142. PubMed ID: 29496006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0.
    Takeda K; Hayashi T; Abe T; Hirano Y; Hanazono Y; Yohda M; Miki K
    J Struct Biol; 2011 Apr; 174(1):92-9. PubMed ID: 21195185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some like it hot: the structure and function of small heat-shock proteins.
    Haslbeck M; Franzmann T; Weinfurtner D; Buchner J
    Nat Struct Mol Biol; 2005 Oct; 12(10):842-6. PubMed ID: 16205709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hsp26: a temperature-regulated chaperone.
    Haslbeck M; Walke S; Stromer T; Ehrnsperger M; White HE; Chen S; Saibil HR; Buchner J
    EMBO J; 1999 Dec; 18(23):6744-51. PubMed ID: 10581247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial small heat shock proteins and their use in biotechnology.
    Han MJ; Yun H; Lee SY
    Biotechnol Adv; 2008; 26(6):591-609. PubMed ID: 18789382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new heat shock gene, AgsA, which encodes a small chaperone involved in suppressing protein aggregation in Salmonella enterica serovar typhimurium.
    Tomoyasu T; Takaya A; Sasaki T; Nagase T; Kikuno R; Morioka M; Yamamoto T
    J Bacteriol; 2003 Nov; 185(21):6331-9. PubMed ID: 14563868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.
    Tomoyasu T; Tabata A; Ishikawa Y; Whiley RA; Nagamune H
    J Biosci Bioeng; 2013 Jan; 115(1):15-9. PubMed ID: 22929984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative bacterial two-component small heat shock protein systems.
    Bepperling A; Alte F; Kriehuber T; Braun N; Weinkauf S; Groll M; Haslbeck M; Buchner J
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20407-12. PubMed ID: 23184973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Structural and Functional Characterization of the Small Heat Shock Proteins (sHSP) of the Cyanophage S-ShM2 and Its Host, Synechococcus sp. WH7803.
    Bourrelle-Langlois M; Morrow G; Finet S; Tanguay RM
    PLoS One; 2016; 11(9):e0162233. PubMed ID: 27643500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis.
    Fu X; Chang Z
    Biochem Biophys Res Commun; 2004 Apr; 316(2):291-9. PubMed ID: 15020216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties of silkworm small heat-shock proteins: sHSP19.9 and sHSP20.8.
    Hossain T; Teshiba S; Shigeoka Y; Fujisawa T; Inoko Y; Sakano D; Yamamoto K; Banno Y; Aso Y
    Biosci Biotechnol Biochem; 2010; 74(8):1556-63. PubMed ID: 20699588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mechanism of Subunit Recruitment in Human Small Heat Shock Protein Oligomers.
    Delbecq SP; Rosenbaum JC; Klevit RE
    Biochemistry; 2015 Jul; 54(28):4276-84. PubMed ID: 26098708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.