These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22001238)

  • 1. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal.
    Janowska B; Kurpios-Piec D; Prorok P; Szparecki G; Komisarski M; Kowalczyk P; Janion C; Tudek B
    Mutat Res; 2012 Jan; 729(1-2):41-51. PubMed ID: 22001238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli.
    Janowska B; Komisarski M; Prorok P; Sokołowska B; Kuśmierek J; Janion C; Tudek B
    Int J Biol Sci; 2009 Sep; 5(6):611-20. PubMed ID: 19834545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for DNA polymerase V in G --> T mutations from the major benzo[a]pyrene N2-dG adduct when studied in a 5'-TGT sequence in E. coli.
    Yin J; Seo KY; Loechler EL
    DNA Repair (Amst); 2004 Mar; 3(3):323-34. PubMed ID: 15177047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis.
    Tang M; Pham P; Shen X; Taylor JS; O'Donnell M; Woodgate R; Goodman MF
    Nature; 2000 Apr; 404(6781):1014-8. PubMed ID: 10801133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain adducts of trans-4-hydroxy-2-nonenal to DNA bases cause recombination, base substitutions and frameshift mutations in M13 phage.
    Kowalczyk P; Cieśla JM; Komisarski M; Kuśmierek JT; Tudek B
    Mutat Res; 2004 Jun; 550(1-2):33-48. PubMed ID: 15135639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic requirement for mutagenesis of the G[8,5-Me]T cross-link in Escherichia coli: DNA polymerases IV and V compete for error-prone bypass.
    Raychaudhury P; Basu AK
    Biochemistry; 2011 Mar; 50(12):2330-8. PubMed ID: 21302943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5.
    Nowosielska A; Janion C; Grzesiuk E
    Environ Mol Mutagen; 2004; 43(4):226-34. PubMed ID: 15141361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells.
    Feng Z; Hu W; Amin S; Tang MS
    Biochemistry; 2003 Jul; 42(25):7848-54. PubMed ID: 12820894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli DNA polymerase II can efficiently bypass 3,N(4)-ethenocytosine lesions in vitro and in vivo.
    Al Mamun AA; Humayun MZ
    Mutat Res; 2006 Jan; 593(1-2):164-76. PubMed ID: 16171831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens.
    Matsui K; Yamada M; Imai M; Yamamoto K; Nohmi T
    DNA Repair (Amst); 2006 Apr; 5(4):465-78. PubMed ID: 16455311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli.
    Al Mamun AA
    Mutat Res; 2007 Dec; 625(1-2):29-39. PubMed ID: 17586534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "tale" of UmuD and its role in SOS mutagenesis.
    Gonzalez M; Woodgate R
    Bioessays; 2002 Feb; 24(2):141-8. PubMed ID: 11835278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct.
    Fuchs RP; Koffel-Schwartz N; Pelet S; Janel-Bintz R; Napolitano R; Becherel OJ; Broschard TH; Burnouf DY; Wagner J
    Biochem Soc Trans; 2001 May; 29(Pt 2):191-5. PubMed ID: 11356152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and functions of Escherichia coli: Pol IV and Pol V.
    Fuchs RP; Fujii S; Wagner J
    Adv Protein Chem; 2004; 69():229-64. PubMed ID: 15588845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Misincorporation of nucleotides opposite five-membered exocyclic ring guanine derivatives by escherichia coli polymerases in vitro and in vivo: 1,N2-ethenoguanine, 5,6,7,9-tetrahydro-9-oxoimidazo[1, 2-a]purine, and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1, 2-a]purine.
    Langouët S; Mican AN; Müller M; Fink SP; Marnett LJ; Muhle SA; Guengerich FP
    Biochemistry; 1998 Apr; 37(15):5184-93. PubMed ID: 9548749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation spectra of M13 vectors containing site-specific Cis-Syn, Trans-Syn-I, (6-4), and Dewar pyrimidone photoproducts of thymidylyl-(3'-->5')-thymidine in Escherichia coli under SOS conditions.
    Smith CA; Wang M; Jiang N; Che L; Zhao X; Taylor JS
    Biochemistry; 1996 Apr; 35(13):4146-54. PubMed ID: 8672450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli.
    Seo KY; Nagalingam A; Miri S; Yin J; Chandani S; Kolbanovskiy A; Shastry A; Loechler EL
    DNA Repair (Amst); 2006 Apr; 5(4):515-22. PubMed ID: 16483853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.