BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22001402)

  • 1. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species.
    Kimura S; Kaya H; Kawarazaki T; Hiraoka G; Senzaki E; Michikawa M; Kuchitsu K
    Biochim Biophys Acta; 2012 Feb; 1823(2):398-405. PubMed ID: 22001402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
    Kawarazaki T; Kimura S; Iizuka A; Hanamata S; Nibori H; Michikawa M; Imai A; Abe M; Kaya H; Kuchitsu K
    Biochim Biophys Acta; 2013 Dec; 1833(12):2775-2780. PubMed ID: 23872431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation.
    Ogasawara Y; Kaya H; Hiraoka G; Yumoto F; Kimura S; Kadota Y; Hishinuma H; Senzaki E; Yamagoe S; Nagata K; Nara M; Suzuki K; Tanokura M; Kuchitsu K
    J Biol Chem; 2008 Apr; 283(14):8885-92. PubMed ID: 18218618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein.
    Torres MA; Morales J; Sánchez-Rodríguez C; Molina A; Dangl JL
    Mol Plant Microbe Interact; 2013 Jun; 26(6):686-94. PubMed ID: 23441575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.
    Kwak JM; Mori IC; Pei ZM; Leonhardt N; Torres MA; Dangl JL; Bloom RE; Bodde S; Jones JD; Schroeder JI
    EMBO J; 2003 Jun; 22(11):2623-33. PubMed ID: 12773379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system.
    Kimura S; Kawarazaki T; Nibori H; Michikawa M; Imai A; Kaya H; Kuchitsu K
    J Biochem; 2013 Feb; 153(2):191-5. PubMed ID: 23162070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.
    Jiao Y; Sun L; Song Y; Wang L; Liu L; Zhang L; Liu B; Li N; Miao C; Hao F
    J Exp Bot; 2013 Nov; 64(14):4183-92. PubMed ID: 23963673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase.
    Sirichandra C; Gu D; Hu HC; Davanture M; Lee S; Djaoui M; Valot B; Zivy M; Leung J; Merlot S; Kwak JM
    FEBS Lett; 2009 Sep; 583(18):2982-6. PubMed ID: 19716822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local positive feedback regulation determines cell shape in root hair cells.
    Takeda S; Gapper C; Kaya H; Bell E; Kuchitsu K; Dolan L
    Science; 2008 Feb; 319(5867):1241-4. PubMed ID: 18309082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases.
    Kaya H; Takeda S; Kobayashi MJ; Kimura S; Iizuka A; Imai A; Hishinuma H; Kawarazaki T; Mori K; Yamamoto Y; Murakami Y; Nakauchi A; Abe M; Kuchitsu K
    Plant J; 2019 Apr; 98(2):291-300. PubMed ID: 30570803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB.
    Takahashi S; Kimura S; Kaya H; Iizuka A; Wong HL; Shimamoto K; Kuchitsu K
    J Biochem; 2012 Jul; 152(1):37-43. PubMed ID: 22528669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis.
    Liu B; Sun L; Ma L; Hao FS
    Plant Cell Rep; 2017 Jun; 36(6):947-957. PubMed ID: 28337518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the NADPH Oxidase RBOHD During Plant Immunity.
    Kadota Y; Shirasu K; Zipfel C
    Plant Cell Physiol; 2015 Aug; 56(8):1472-80. PubMed ID: 25941234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis.
    Li N; Sun L; Zhang L; Song Y; Hu P; Li C; Hao FS
    Planta; 2015 Mar; 241(3):591-602. PubMed ID: 25399352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis.
    Chaouch S; Queval G; Noctor G
    Plant J; 2012 Feb; 69(4):613-27. PubMed ID: 21985584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity.
    Gupta DK; Pena LB; Romero-Puertas MC; Hernández A; Inouhe M; Sandalio LM
    Plant Cell Environ; 2017 Apr; 40(4):509-526. PubMed ID: 26765289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF.
    Drerup MM; Schlücking K; Hashimoto K; Manishankar P; Steinhorst L; Kuchitsu K; Kudla J
    Mol Plant; 2013 Mar; 6(2):559-69. PubMed ID: 23335733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress.
    Ma L; Zhang H; Sun L; Jiao Y; Zhang G; Miao C; Hao F
    J Exp Bot; 2012 Jan; 63(1):305-17. PubMed ID: 21984648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.
    Liu Y; He C
    Plant Cell Rep; 2016 May; 35(5):995-1007. PubMed ID: 26883222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis.
    Chen Z; Xie Y; Gu Q; Zhao G; Zhang Y; Cui W; Xu S; Wang R; Shen W
    Free Radic Biol Med; 2017 Jul; 108():465-477. PubMed ID: 28412199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.