These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 22001432)
21. Heterologous Expression of Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027 [TBL] [Abstract][Full Text] [Related]
22. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Dörmann P; Voelker TA; Ohlrogge JB Arch Biochem Biophys; 1995 Jan; 316(1):612-8. PubMed ID: 7840673 [TBL] [Abstract][Full Text] [Related]
23. Cloning and characterization of cDNAs encoding for long-chain saturated acyl-ACP thioesterases from the developing seeds of Brassica juncea. Jha SS; Jha JK; Chattopadhyaya B; Basu A; Sen SK; Maiti MK Plant Physiol Biochem; 2010 Jun; 48(6):476-80. PubMed ID: 20356753 [TBL] [Abstract][Full Text] [Related]
24. Effect of NADPH availability on free fatty acid production in Escherichia coli. Li W; Wu H; Li M; San KY Biotechnol Bioeng; 2018 Feb; 115(2):444-452. PubMed ID: 28976546 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316 [TBL] [Abstract][Full Text] [Related]
26. Alteration of acyl-acyl carrier protein pools and acetyl-CoA carboxylase expression in Escherichia coli by a plant medium chain acyl-acyl carrier protein thioesterase. Ohlrogge J; Savage L; Jaworski J; Voelker T; Post-Beittenmiller D Arch Biochem Biophys; 1995 Feb; 317(1):185-90. PubMed ID: 7872782 [TBL] [Abstract][Full Text] [Related]
27. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Sánchez-García A; Moreno-Pérez AJ; Muro-Pastor AM; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2010 Jun; 71(8-9):860-9. PubMed ID: 20382402 [TBL] [Abstract][Full Text] [Related]
28. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Salas JJ; Ohlrogge JB Arch Biochem Biophys; 2002 Jul; 403(1):25-34. PubMed ID: 12061798 [TBL] [Abstract][Full Text] [Related]
29. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866 [TBL] [Abstract][Full Text] [Related]
30. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Serrano-Vega MJ; Garcés R; Martínez-Force E Planta; 2005 Aug; 221(6):868-80. PubMed ID: 15841386 [TBL] [Abstract][Full Text] [Related]
31. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Zhang X; Agrawal A; San KY Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854 [TBL] [Abstract][Full Text] [Related]
32. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock. Wang D; Wu H; Thakker C; Beyersdorf J; Bennett GN; San KY Biotechnol Prog; 2015; 31(3):686-94. PubMed ID: 25919701 [TBL] [Abstract][Full Text] [Related]
33. Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds. Liu B; Sun Y; Wang X; Xue J; Wang J; Jia X; Li R Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361594 [TBL] [Abstract][Full Text] [Related]
34. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002 [TBL] [Abstract][Full Text] [Related]
35. Microbial production of short-chain alkanes. Choi YJ; Lee SY Nature; 2013 Oct; 502(7472):571-4. PubMed ID: 24077097 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed. Zhou Z; Lakhssassi N; Knizia D; Cullen MA; El Baz A; Embaby MG; Liu S; Badad O; Vuong TD; AbuGhazaleh A; Nguyen HT; Meksem K Theor Appl Genet; 2021 Nov; 134(11):3611-3623. PubMed ID: 34319424 [TBL] [Abstract][Full Text] [Related]
37. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis. Feng Y; Zhang Y; Wang Y; Liu J; Liu Y; Cao X; Xue S Appl Microbiol Biotechnol; 2018 Apr; 102(7):3173-3182. PubMed ID: 29470618 [TBL] [Abstract][Full Text] [Related]
38. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Moreno-Pérez AJ; Sánchez-García A; Salas JJ; Garcés R; Martínez-Force E Plant Physiol Biochem; 2011 Jan; 49(1):82-7. PubMed ID: 21071236 [TBL] [Abstract][Full Text] [Related]
39. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase. Jing F; Yandeau-Nelson MD; Nikolau BJ Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825 [TBL] [Abstract][Full Text] [Related]