These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 22001560)
1. The crucial role of trimerization domains in collagen folding. Boudko SP; Engel J; Bächinger HP Int J Biochem Cell Biol; 2012 Jan; 44(1):21-32. PubMed ID: 22001560 [TBL] [Abstract][Full Text] [Related]
2. Trimerization of collagen IX alpha-chains does not require the presence of the COL1 and NC1 domains. Jäälinoja J; Ylöstalo J; Beckett W; Hulmes DJ; Ala-Kokko L Biochem J; 2008 Jan; 409(2):545-54. PubMed ID: 17880280 [TBL] [Abstract][Full Text] [Related]
3. Noncollagenous region of the streptococcal collagen-like protein is a trimerization domain that supports refolding of adjacent homologous and heterologous collagenous domains. Yu Z; Mirochnitchenko O; Xu C; Yoshizumi A; Brodsky B; Inouye M Protein Sci; 2010 Apr; 19(4):775-85. PubMed ID: 20162611 [TBL] [Abstract][Full Text] [Related]
4. Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics. Boudko S; Frank S; Kammerer RA; Stetefeld J; Schulthess T; Landwehr R; Lustig A; Bächinger HP; Engel J J Mol Biol; 2002 Mar; 317(3):459-70. PubMed ID: 11922677 [TBL] [Abstract][Full Text] [Related]
5. Studies of the local conformational properties of the cell-adhesion domain of collagen type IV in synthetic heterotrimeric peptides. Saccà B; Fiori S; Moroder L Biochemistry; 2003 Apr; 42(12):3429-36. PubMed ID: 12653546 [TBL] [Abstract][Full Text] [Related]
6. Structure and assembly of the heterotrimeric and homotrimeric C-propeptides of type I collagen: significance of the alpha2(I) chain. Malone JP; Alvares K; Veis A Biochemistry; 2005 Nov; 44(46):15269-79. PubMed ID: 16285730 [TBL] [Abstract][Full Text] [Related]
7. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin. Mohs A; Li Y; Doss-Pepe E; Baum J; Brodsky B Biochemistry; 2005 Feb; 44(6):1793-9. PubMed ID: 15697204 [TBL] [Abstract][Full Text] [Related]
8. Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. Persikov AV; Pillitteri RJ; Amin P; Schwarze U; Byers PH; Brodsky B Hum Mutat; 2004 Oct; 24(4):330-7. PubMed ID: 15365990 [TBL] [Abstract][Full Text] [Related]
9. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease. Liu X; Kim S; Dai QH; Brodsky B; Baum J Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516 [TBL] [Abstract][Full Text] [Related]
10. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W; Battineni ML; Brodsky B Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687 [TBL] [Abstract][Full Text] [Related]
11. A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation. Barth D; Milbradt AG; Renner C; Moroder L Chembiochem; 2004 Jan; 5(1):79-86. PubMed ID: 14695516 [TBL] [Abstract][Full Text] [Related]
12. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations. Stultz CM Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446 [TBL] [Abstract][Full Text] [Related]
13. Thermostability gradient in the collagen triple helix reveals its multi-domain structure. Steplewski A; Majsterek I; McAdams E; Rucker E; Brittingham RJ; Ito H; Hirai K; Adachi E; Jimenez SA; Fertala A J Mol Biol; 2004 May; 338(5):989-98. PubMed ID: 15111062 [TBL] [Abstract][Full Text] [Related]
14. Structural properties of a collagenous heterotrimer that mimics the collagenase cleavage site of collagen type I. Fiori S; Saccà B; Moroder L J Mol Biol; 2002 Jun; 319(5):1235-42. PubMed ID: 12079360 [TBL] [Abstract][Full Text] [Related]
15. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis. Malone JP; George A; Veis A Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of short collagen-like triple helices by protein engineering. Frank S; Kammerer RA; Mechling D; Schulthess T; Landwehr R; Bann J; Guo Y; Lustig A; Bächinger HP; Engel J J Mol Biol; 2001 May; 308(5):1081-9. PubMed ID: 11352592 [TBL] [Abstract][Full Text] [Related]
17. Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Brodsky B; Thiagarajan G; Madhan B; Kar K Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087 [TBL] [Abstract][Full Text] [Related]
18. Peptide investigations of pairwise interactions in the collagen triple-helix. Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B J Mol Biol; 2002 Feb; 316(2):385-94. PubMed ID: 11851346 [TBL] [Abstract][Full Text] [Related]
19. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Pace JM; Atkinson M; Willing MC; Wallis G; Byers PH Hum Mutat; 2001 Oct; 18(4):319-26. PubMed ID: 11668615 [TBL] [Abstract][Full Text] [Related]
20. A short sequence in the N-terminal region is required for the trimerization of type XIII collagen and is conserved in other collagenous transmembrane proteins. Snellman A; Tu H; Väisänen T; Kvist AP; Huhtala P; Pihlajaniemi T EMBO J; 2000 Oct; 19(19):5051-9. PubMed ID: 11013208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]