BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 22001671)

  • 21. Mitochondrial inner-membrane protease Yme1 degrades outer-membrane proteins Tom22 and Om45.
    Wu X; Li L; Jiang H
    J Cell Biol; 2018 Jan; 217(1):139-149. PubMed ID: 29138251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of mitochondrial proteostasis by the proton gradient.
    Patron M; Tarasenko D; Nolte H; Kroczek L; Ghosh M; Ohba Y; Lasarzewski Y; Ahmadi ZA; Cabrera-Orefice A; Eyiama A; Kellermann T; Rugarli EI; Brandt U; Meinecke M; Langer T
    EMBO J; 2022 Aug; 41(16):e110476. PubMed ID: 35912435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autocatalytic processing of m-AAA protease subunits in mitochondria.
    Koppen M; Bonn F; Ehses S; Langer T
    Mol Biol Cell; 2009 Oct; 20(19):4216-24. PubMed ID: 19656850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteasomal AAA-ATPases: structure and function.
    Bar-Nun S; Glickman MH
    Biochim Biophys Acta; 2012 Jan; 1823(1):67-82. PubMed ID: 21820014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial proteases in human diseases.
    Gomez-Fabra Gala M; Vögtle FN
    FEBS Lett; 2021 Apr; 595(8):1205-1222. PubMed ID: 33453058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation.
    Shin M; Watson ER; Song AS; Mindrebo JT; Novick SJ; Griffin PR; Wiseman RL; Lander GC
    Nat Commun; 2021 May; 12(1):3239. PubMed ID: 34050165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting Substrate Specificities of the Mitochondrial AFG3L2 Protease.
    Ding B; Martin DW; Rampello AJ; Glynn SE
    Biochemistry; 2018 Jul; 57(28):4225-4235. PubMed ID: 29932645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease.
    Su SC; Lin CC; Tai HC; Chang MY; Ho MR; Babu CS; Liao JH; Wu SH; Chang YC; Lim C; Chang CI
    Structure; 2016 May; 24(5):676-686. PubMed ID: 27041593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia.
    Koppen M; Metodiev MD; Casari G; Rugarli EI; Langer T
    Mol Cell Biol; 2007 Jan; 27(2):758-67. PubMed ID: 17101804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.
    König T; Tröder SE; Bakka K; Korwitz A; Richter-Dennerlein R; Lampe PA; Patron M; Mühlmeister M; Guerrero-Castillo S; Brandt U; Decker T; Lauria I; Paggio A; Rizzuto R; Rugarli EI; De Stefani D; Langer T
    Mol Cell; 2016 Oct; 64(1):148-162. PubMed ID: 27642048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Putative Mitochondrial Protease Substrates.
    Hofsetz E; Huesgen PF; Trifunovic A
    Methods Mol Biol; 2021; 2192():313-329. PubMed ID: 33230781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular insights into the
    Lee S; Lee H; Yoo S; Kim H
    J Biol Chem; 2017 Dec; 292(49):20058-20066. PubMed ID: 29030426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria.
    Leonhard K; Herrmann JM; Stuart RA; Mannhaupt G; Neupert W; Langer T
    EMBO J; 1996 Aug; 15(16):4218-29. PubMed ID: 8861950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control.
    Voos W; Ward LA; Truscott KN
    Subcell Biochem; 2013; 66():223-63. PubMed ID: 23479443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.
    Hori A; Yoshida M; Ling F
    Genes Cells; 2011 May; 16(5):527-44. PubMed ID: 21463454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae.
    Van Dyck L; Langer T
    Cell Mol Life Sci; 1999 Nov; 56(9-10):825-42. PubMed ID: 11212342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity.
    Deshwal S; Fiedler KU; Langer T
    Annu Rev Biochem; 2020 Jun; 89():501-528. PubMed ID: 32075415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates.
    Yang Y; Gunasekara M; Muhammednazaar S; Li Z; Hong H
    Protein Sci; 2019 Jul; 28(7):1262-1275. PubMed ID: 31008538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness.
    Richter U; Lahtinen T; Marttinen P; Suomi F; Battersby BJ
    J Cell Biol; 2015 Oct; 211(2):373-89. PubMed ID: 26504172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria.
    Tatsuta T; Augustin S; Nolden M; Friedrichs B; Langer T
    EMBO J; 2007 Jan; 26(2):325-35. PubMed ID: 17245427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.