BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22001780)

  • 1. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations.
    Sousa FL; Alves RJ; Ribeiro MA; Pereira-Leal JB; Teixeira M; Pereira MM
    Biochim Biophys Acta; 2012 Apr; 1817(4):629-37. PubMed ID: 22001780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinformatics classifier and database for heme-copper oxygen reductases.
    Sousa FL; Alves RJ; Pereira-Leal JB; Teixeira M; Pereira MM
    PLoS One; 2011 Apr; 6(4):e19117. PubMed ID: 21559461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the haem copper oxidases superfamily: a rooting tale.
    Gribaldo S; Talla E; Brochier-Armanet C
    Trends Biochem Sci; 2009 Aug; 34(8):375-81. PubMed ID: 19647436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families.
    Pei J; Li W; Kinch LN; Grishin NV
    Protein Sci; 2014 Sep; 23(9):1220-34. PubMed ID: 24931479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and evolution of nitric oxide reduction in bacteria and archaea.
    Murali R; Pace LA; Sanford RA; Ward LM; Lynes MM; Hatzenpichler R; Lingappa UF; Fischer WW; Gennis RB; Hemp J
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2316422121. PubMed ID: 38900790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural and functional perspective on the evolution of the heme-copper oxidases.
    Sharma V; Wikström M
    FEBS Lett; 2014 Nov; 588(21):3787-92. PubMed ID: 25261254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling.
    Hemp J; Gennis RB
    Results Probl Cell Differ; 2008; 45():1-31. PubMed ID: 18183358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring membrane respiratory chains.
    Marreiros BC; Calisto F; Castro PJ; Duarte AM; Sena FV; Silva AF; Sousa FM; Teixeira M; Refojo PN; Pereira MM
    Biochim Biophys Acta; 2016 Aug; 1857(8):1039-1067. PubMed ID: 27044012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
    Mahinthichaichan P; Gennis RB; Tajkhorshid E
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the diversity of F
    Mascotti ML; Juri Ayub M; Fraaije MW
    Proteins; 2021 Nov; 89(11):1497-1507. PubMed ID: 34216160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multiple evolutionary histories of dioxygen reductases: Implications for the origin and evolution of aerobic respiration.
    Brochier-Armanet C; Talla E; Gribaldo S
    Mol Biol Evol; 2009 Feb; 26(2):285-97. PubMed ID: 18974088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
    Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of quinol oxidation within the heme‑copper oxidoreductase superfamily.
    Murali R; Hemp J; Gennis RB
    Biochim Biophys Acta Bioenerg; 2022 Nov; 1863(8):148907. PubMed ID: 35944661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel scenario for the evolution of haem-copper oxygen reductases.
    Pereira MM; Santana M; Teixeira M
    Biochim Biophys Acta; 2001 Jun; 1505(2-3):185-208. PubMed ID: 11334784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional proton transfer pathways in the heme-copper oxidase superfamily.
    Lee HJ; Reimann J; Huang Y; Adelroth P
    Biochim Biophys Acta; 2012 Apr; 1817(4):537-44. PubMed ID: 22056517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.
    Tosha T; Shiro Y
    IUBMB Life; 2013 Mar; 65(3):217-26. PubMed ID: 23378174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing the evolutionary history of F
    Mascotti ML; Kumar H; Nguyen QT; Ayub MJ; Fraaije MW
    Sci Rep; 2018 Dec; 8(1):17571. PubMed ID: 30514849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton pathways, ligand binding and dynamics of the catalytic site in haem-copper oxygen reductases: a comparison between the three families.
    Pereira MM; Teixeira M
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):340-6. PubMed ID: 15100049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.