BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22001780)

  • 21. Comparison between the nitric oxide reductase family and its aerobic relatives, the cytochrome oxidases.
    de Vries S; Schröder I
    Biochem Soc Trans; 2002 Aug; 30(4):662-7. PubMed ID: 12196159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism.
    Pereira MM; Sousa FL; Veríssimo AF; Teixeira M
    Biochim Biophys Acta; 2008; 1777(7-8):929-34. PubMed ID: 18515066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme-copper oxygen reductases.
    Hemp J; Robinson DE; Ganesan KB; Martinez TJ; Kelleher NL; Gennis RB
    Biochemistry; 2006 Dec; 45(51):15405-10. PubMed ID: 17176062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper proteomes, phylogenetics and evolution.
    Decaria L; Bertini I; Williams RJ
    Metallomics; 2011 Jan; 3(1):56-60. PubMed ID: 21085721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products.
    Borisov VB; Forte E; Giuffrè A; Konstantinov A; Sarti P
    J Inorg Biochem; 2009 Aug; 103(8):1185-7. PubMed ID: 19592112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress.
    Giuffrè A; Borisov VB; Arese M; Sarti P; Forte E
    Biochim Biophys Acta; 2014 Jul; 1837(7):1178-87. PubMed ID: 24486503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding.
    Huang Y; Reimann J; Singh LM; Adelroth P
    Biochim Biophys Acta; 2010; 1797(6-7):724-31. PubMed ID: 20307490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights Into How Heme Reduction Potentials Modulate Enzymatic Activities of a Myoglobin-based Functional Oxidase.
    Bhagi-Damodaran A; Kahle M; Shi Y; Zhang Y; Ädelroth P; Lu Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6622-6626. PubMed ID: 28470988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrogenic nitric oxide reductase.
    Al-Attar S; de Vries S
    FEBS Lett; 2015 Jul; 589(16):2050-7. PubMed ID: 26149211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex Interplay of Heme-Copper Oxidases with Nitrite and Nitric Oxide.
    Chen J; Xie P; Huang Y; Gao H
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen.
    Flock U; Watmough NJ; Adelroth P
    Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Globin-coupled sensors, protoglobins, and the last universal common ancestor.
    Freitas TA; Saito JA; Hou S; Alam M
    J Inorg Biochem; 2005 Jan; 99(1):23-33. PubMed ID: 15598488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Respiratory oxidases: the enzymes which use most of the oxygen which living things breathe].
    Toledo-Cuevas EM
    Rev Latinoam Microbiol; 1997; 39(3-4):167-86. PubMed ID: 10932727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function.
    Adam SM; Wijeratne GB; Rogler PJ; Diaz DE; Quist DA; Liu JJ; Karlin KD
    Chem Rev; 2018 Nov; 118(22):10840-11022. PubMed ID: 30372042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea.
    Murali R; Gennis RB; Hemp J
    ISME J; 2021 Dec; 15(12):3534-3548. PubMed ID: 34145390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The many faces of the helix-turn-helix domain: transcription regulation and beyond.
    Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM
    FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities.
    Bhagi-Damodaran A; Petrik I; Lu Y
    Isr J Chem; 2016 Oct; 56():773-790. PubMed ID: 27994254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.